These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 29878053)
1. Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis. Tian M; Reed JL Bioinformatics; 2018 Nov; 34(22):3882-3888. PubMed ID: 29878053 [TBL] [Abstract][Full Text] [Related]
2. Improving flux predictions by integrating data from multiple strains. Long MR; Reed JL Bioinformatics; 2017 Mar; 33(6):893-900. PubMed ID: 27998937 [TBL] [Abstract][Full Text] [Related]
3. Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function. Zhang SW; Gou WL; Li Y Mol Biosyst; 2017 May; 13(5):901-909. PubMed ID: 28338129 [TBL] [Abstract][Full Text] [Related]
4. Assessment of transcriptomic constraint-based methods for central carbon flux inference. Bhadra-Lobo S; Kim MK; Lun DS PLoS One; 2020; 15(9):e0238689. PubMed ID: 32903284 [TBL] [Abstract][Full Text] [Related]
5. Accurate flux predictions using tissue-specific gene expression in plant metabolic modeling. Kaste JAM; Shachar-Hill Y Bioinformatics; 2023 May; 39(5):. PubMed ID: 37040081 [TBL] [Abstract][Full Text] [Related]
6. ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology. Paklao T; Suratanee A; Plaimas K BMC Bioinformatics; 2023 Dec; 24(1):492. PubMed ID: 38129786 [TBL] [Abstract][Full Text] [Related]
7. Maximizing multi-reaction dependencies provides more accurate and precise predictions of intracellular fluxes than the principle of parsimony. Hashemi S; Razaghi-Moghadam Z; Nikoloski Z PLoS Comput Biol; 2023 Sep; 19(9):e1011489. PubMed ID: 37721963 [TBL] [Abstract][Full Text] [Related]
8. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data. Kim MK; Lane A; Kelley JJ; Lun DS PLoS One; 2016; 11(6):e0157101. PubMed ID: 27327084 [TBL] [Abstract][Full Text] [Related]
9. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data. Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897 [TBL] [Abstract][Full Text] [Related]
10. Exploring the associations between transcript levels and fluxes in constraint-based models of metabolism. Sinha N; van Schothorst EM; Hooiveld GJEJ; Keijer J; Martins Dos Santos VAP; Suarez-Diez M BMC Bioinformatics; 2021 Nov; 22(1):574. PubMed ID: 34839828 [TBL] [Abstract][Full Text] [Related]
11. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models. Pandey V; Hadadi N; Hatzimanikatis V PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653 [TBL] [Abstract][Full Text] [Related]
12. Genome-Scale Ando D; García Martín H Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239 [TBL] [Abstract][Full Text] [Related]
13. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle. Song HS; Reifman J; Wallqvist A PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773 [TBL] [Abstract][Full Text] [Related]
14. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. Machado D; Herrgård M PLoS Comput Biol; 2014 Apr; 10(4):e1003580. PubMed ID: 24762745 [TBL] [Abstract][Full Text] [Related]
15. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Yizhak K; Benyamini T; Liebermeister W; Ruppin E; Shlomi T Bioinformatics; 2010 Jun; 26(12):i255-60. PubMed ID: 20529914 [TBL] [Abstract][Full Text] [Related]
16. Predicting metabolic fluxes from omics data via machine learning: Moving from knowledge-driven towards data-driven approaches. Gonçalves DM; Henriques R; Costa RS Comput Struct Biotechnol J; 2023; 21():4960-4973. PubMed ID: 37876626 [TBL] [Abstract][Full Text] [Related]
17. Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli. Xu R; Razaghi-Moghadam Z; Nikoloski Z Bioinformatics; 2021 Nov; 37(21):3848-3855. PubMed ID: 34358300 [TBL] [Abstract][Full Text] [Related]