BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29878318)

  • 1. Transforming growth factor-β signal regulates gut bending in the sea urchin embryo.
    Suzuki H; Yaguchi S
    Dev Growth Differ; 2018 May; 60(4):216-225. PubMed ID: 29878318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dorsal-ventral axis formation in sea urchin embryos.
    Su YH
    Curr Top Dev Biol; 2022; 146():183-210. PubMed ID: 35152983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct TGF-ß signaling via alk4/5/7 pathway is involved in gut bending in sea urchin embryos.
    Suzuki H; Yaguchi S
    Dev Dyn; 2022 Jan; 251(1):226-234. PubMed ID: 34816532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
    Range R; Lapraz F; Quirin M; Marro S; Besnardeau L; Lepage T
    Development; 2007 Oct; 134(20):3649-64. PubMed ID: 17855430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.
    Haillot E; Molina MD; Lapraz F; Lepage T
    PLoS Biol; 2015; 13(9):e1002247. PubMed ID: 26352141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering and modelling the TGF-β signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo.
    Floc'hlay S; Molina MD; Hernandez C; Haillot E; Thomas-Chollier M; Lepage T; Thieffry D
    Development; 2021 Jan; 148(2):. PubMed ID: 33298464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo.
    Sun Z; Ettensohn CA
    Dev Biol; 2017 Jan; 421(2):149-160. PubMed ID: 27955944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos.
    Piacentino ML; Ramachandran J; Bradham CA
    Development; 2015 Mar; 142(5):943-52. PubMed ID: 25633352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maternal factors regulating symmetry breaking and dorsal-ventral axis formation in the sea urchin embryo.
    Molina MD; Lepage T
    Curr Top Dev Biol; 2020; 140():283-316. PubMed ID: 32591077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo.
    Range R; Lepage T
    Dev Biol; 2011 Sep; 357(2):440-9. PubMed ID: 21782809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus.
    Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN
    Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.
    Piacentino ML; Chung O; Ramachandran J; Zuch DT; Yu J; Conaway EA; Reyna AE; Bradham CA
    Dev Biol; 2016 Apr; 412(1):44-56. PubMed ID: 26905309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo.
    Molina MD; de Crozé N; Haillot E; Lepage T
    Curr Opin Genet Dev; 2013 Aug; 23(4):445-53. PubMed ID: 23769944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.