These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2987861)

  • 1. Autonomously replicating sequences from the non transcribed spacers of Tetrahymena thermophila ribosomal DNA.
    Amin AA; Pearlman RE
    Nucleic Acids Res; 1985 Apr; 13(7):2647-59. PubMed ID: 2987861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro deletion analysis of ARS elements spanning the replication origin in the 5' non-transcribed spacer of Tetrahymena thermophila ribosomal DNA.
    Amin AA; Pearlman RE
    Nucleic Acids Res; 1986 Mar; 14(6):2749-62. PubMed ID: 3960733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A restriction fragment length polymorphism in the 5' non-transcribed spacer of the rDNA of Tetrahymena thermophila inbred strains B and C3.
    Luehrsen KR; Baum MP; Orias E
    Gene; 1987; 55(2-3):169-78. PubMed ID: 2889644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast centromere sequences do not confer mitotic stability on circular plasmids containing ARS elements of Tetrahymena thermophila rDNA.
    Amin AA; Pearlman RE
    Curr Genet; 1987; 11(5):353-7. PubMed ID: 2836076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two separate regions of the extrachromosomal ribosomal deoxyribonucleic acid of Tetrahymena thermophila enable autonomous replication of plasmids in Saccharomyces cerevisiae.
    Kiss GB; Amin AA; Pearlman RE
    Mol Cell Biol; 1981 Jun; 1(6):535-43. PubMed ID: 6765606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of Tetrahymena thermophila with a mutated circular ribosomal DNA plasmid vector.
    Yu GL; Blackburn EH
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8487-91. PubMed ID: 2813408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular ribosomal DNA plasmids transform Tetrahymena thermophila by homologous recombination with endogenous macronuclear ribosomal DNA.
    Yu GL; Hasson M; Blackburn EH
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5151-5. PubMed ID: 2839832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Tetrahymena ARS sequence function in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Luehrsen KR; Pearlman RE; Pata J; Orias E
    Curr Genet; 1988 Sep; 14(3):225-33. PubMed ID: 3058332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved arrangements of repeated DNA sequences in nontranscribed spacers of ciliate ribosomal RNA genes: evidence for molecular coevolution.
    Challoner PB; Amin AA; Pearlman RE; Blackburn EH
    Nucleic Acids Res; 1985 Apr; 13(7):2661-80. PubMed ID: 3923439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of sequences adjacent to the telomeric C4A2 repeats of ciliate macronuclear ribosomal RNA gene molecules.
    Challoner PB; Blackburn EH
    Nucleic Acids Res; 1986 Aug; 14(15):6299-311. PubMed ID: 3092184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evidence for somatic recombination in the ribosomal DNA of Tetrahymena thermophila.
    Løvlie A; Haller BL; Orias E
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5156-60. PubMed ID: 2899324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin structure of the telomeric region and 3'-nontranscribed spacer of Tetrahymena ribosomal RNA genes.
    Budarf ML; Blackburn EH
    J Biol Chem; 1986 Jan; 261(1):363-9. PubMed ID: 3001053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitotic and meiotic stability of linear plasmids in yeast.
    Dani GM; Zakian VA
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3406-10. PubMed ID: 6344082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory sequences for the amplification and replication of the ribosomal DNA minichromosome in Tetrahymena thermophila.
    Blomberg P; Randolph C; Yao CH; Yao MC
    Mol Cell Biol; 1997 Dec; 17(12):7237-47. PubMed ID: 9372956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of DNA-binding proteins that recognize a conserved type I repeat sequence in the replication origin region of Tetrahymena rDNA.
    Umthun AR; Hou Z; Sibenaller ZA; Shaiu WL; Dobbs DL
    Nucleic Acids Res; 1994 Oct; 22(21):4432-40. PubMed ID: 7971273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency vector-mediated transformation and gene replacement in Tetrahymena.
    Gaertig J; Gu L; Hai B; Gorovsky MA
    Nucleic Acids Res; 1994 Dec; 22(24):5391-8. PubMed ID: 7816630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning yeast telomeres on linear plasmid vectors.
    Szostak JW; Blackburn EH
    Cell; 1982 May; 29(1):245-55. PubMed ID: 6286143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplification of tandemly repeated origin control sequences confers a replication advantage on rDNA replicons in Tetrahymena thermophila.
    Yu GL; Blackburn EH
    Mol Cell Biol; 1990 May; 10(5):2070-80. PubMed ID: 2325646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin structure at the replication origins and transcription-initiation regions of the ribosomal RNA genes of Tetrahymena.
    Palen TE; Cech TR
    Cell; 1984 Apr; 36(4):933-42. PubMed ID: 6323028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different nucleosome spacing in transcribed and non-transcribed regions of the ribosomal RNA gene in Tetrahymena thermophila.
    Gottschling DE; Palen TE; Cech TR
    Nucleic Acids Res; 1983 Apr; 11(7):2093-109. PubMed ID: 6835846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.