These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29878788)

  • 1. The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length.
    Algethami N; Sadeghi H; Sangtarash S; Lambert CJ
    Nano Lett; 2018 Jul; 18(7):4482-4486. PubMed ID: 29878788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diradical Character as a Guiding Principle for the Insightful Design of Molecular Nanowires with an Increasing Conductance with Length.
    Stuyver T; Zeng T; Tsuji Y; Geerlings P; De Proft F
    Nano Lett; 2018 Nov; 18(11):7298-7304. PubMed ID: 30346793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonexponential Length Dependence of Molecular Conductance in Acene-Based Molecular Wires.
    Valdiviezo J; Rocha P; Polakovsky A; Palma JL
    ACS Sens; 2021 Feb; 6(2):477-484. PubMed ID: 33411533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-range electron tunnelling in oligo-porphyrin molecular wires.
    Sedghi G; García-Suárez VM; Esdaile LJ; Anderson HL; Lambert CJ; Martín S; Bethell D; Higgins SJ; Elliott M; Bennett N; Macdonald JE; Nichols RJ
    Nat Nanotechnol; 2011 Jul; 6(8):517-23. PubMed ID: 21804555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductance Growth of Single-Cluster Junctions with Increasing Sizes.
    Feng A; Hou S; Yan J; Wu Q; Tang Y; Yang Y; Shi J; Xiao ZY; Lambert CJ; Zheng N; Hong W
    J Am Chem Soc; 2022 Aug; 144(34):15680-15688. PubMed ID: 35984293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias-Driven Conductance Increase with Length in Porphyrin Tapes.
    Leary E; Limburg B; Alanazy A; Sangtarash S; Grace I; Swada K; Esdaile LJ; Noori M; González MT; Rubio-Bollinger G; Sadeghi H; Hodgson A; Agraı T N; Higgins SJ; Lambert CJ; Anderson HL; Nichols RJ
    J Am Chem Soc; 2018 Oct; 140(40):12877-12883. PubMed ID: 30207150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving Ultralow, Zero, and Inverted Tunneling Attenuation Coefficients in Molecular Wires with Extended Conjugation.
    Lee HJ; Cho SJ; Kang H; He X; Yoon HJ
    Small; 2021 Mar; 17(12):e2005711. PubMed ID: 33543557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Molecular Anchoring to Graphene Electrodes.
    Sadeghi H; Sangtarash S; Lambert C
    Nano Lett; 2017 Aug; 17(8):4611-4618. PubMed ID: 28700831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cumulene Wires Display Increasing Conductance with Increasing Length.
    Zang Y; Fu T; Zou Q; Ng F; Li H; Steigerwald ML; Nuckolls C; Venkataraman L
    Nano Lett; 2020 Nov; 20(11):8415-8419. PubMed ID: 33095021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ballistic Conductance through Porphyrin Nanoribbons.
    Deng JR; González MT; Zhu H; Anderson HL; Leary E
    J Am Chem Soc; 2024 Feb; 146(6):3651-3659. PubMed ID: 38301131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length dependence of electron transport through molecular wires--a first principles perspective.
    Khoo KH; Chen Y; Li S; Quek SY
    Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical conductance tunability of a porphyrin-cyclophane single-molecule junction.
    Schosser WM; Hsu C; Zwick P; Beltako K; Dulić D; Mayor M; van der Zant HSJ; Pauly F
    Nanoscale; 2022 Jan; 14(3):984-992. PubMed ID: 34989747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Reversed Exponential Decay of the Electrical Conductance in Molecular Wires: The Undeniable Effect of Static Electron Correlation.
    Gil-Guerrero S; Peña-Gallego Á; Ramos-Berdullas N; Martín Pendás Á; Mandado M
    Nano Lett; 2019 Oct; 19(10):7394-7399. PubMed ID: 31525054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions.
    Liu H; Wang N; Zhao J; Guo Y; Yin X; Boey FY; Zhang H
    Chemphyschem; 2008 Jul; 9(10):1416-24. PubMed ID: 18512822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-trivial length dependence of the conductance and negative differential resistance in atomic molecular wires.
    García-Suárez VM; Lambert CJ
    Nanotechnology; 2008 Nov; 19(45):455203. PubMed ID: 21832765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The diversity of electron-transport behaviors of molecular junctions: correlation with the electron-transport pathway.
    Liu H; Yu C; Gao N; Zhao J
    Chemphyschem; 2010 Jun; 11(9):1895-902. PubMed ID: 20379983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silane and Germane Molecular Electronics.
    Su TA; Li H; Klausen RS; Kim NT; Neupane M; Leighton JL; Steigerwald ML; Venkataraman L; Nuckolls C
    Acc Chem Res; 2017 Apr; 50(4):1088-1095. PubMed ID: 28345881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gateway state-mediated, long-range tunnelling in molecular wires.
    Sangtarash S; Vezzoli A; Sadeghi H; Ferri N; O'Brien HM; Grace I; Bouffier L; Higgins SJ; Nichols RJ; Lambert CJ
    Nanoscale; 2018 Feb; 10(6):3060-3067. PubMed ID: 29376529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single-molecule porphyrin-based switch for graphene nano-gaps.
    Wu Q; Hou S; Sadeghi H; Lambert CJ
    Nanoscale; 2018 Apr; 10(14):6524-6530. PubMed ID: 29570203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillation of conductance in molecular junctions of carbon ladder compounds.
    Tada T; Nozaki D; Kondo M; Hamayama S; Yoshizawa K
    J Am Chem Soc; 2004 Nov; 126(43):14182-9. PubMed ID: 15506784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.