These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29879129)

  • 41. RON confers lapatinib resistance in HER2-positive breast cancer cells.
    Wang Q; Quan H; Zhao J; Xie C; Wang L; Lou L
    Cancer Lett; 2013 Oct; 340(1):43-50. PubMed ID: 23811285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interleukin-6 expression contributes to lapatinib resistance through maintenance of stemness property in HER2-positive breast cancer cells.
    Huang WC; Hung CM; Wei CT; Chen TM; Chien PH; Pan HL; Lin YM; Chen YJ
    Oncotarget; 2016 Sep; 7(38):62352-62363. PubMed ID: 27694691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells.
    Cristofolini T; Dalmina M; Sierra JA; Silva AH; Pasa AA; Pittella F; Creczynski-Pasa TB
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110555. PubMed ID: 32228895
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer.
    Merry CR; McMahon S; Forrest ME; Bartels CF; Saiakhova A; Bartel CA; Scacheri PC; Thompson CL; Jackson MW; Harris LN; Khalil AM
    Oncotarget; 2016 Aug; 7(33):53230-53244. PubMed ID: 27449296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: effects on insulin-like growth factor I signaling.
    Nahta R; Yuan LX; Du Y; Esteva FJ
    Mol Cancer Ther; 2007 Feb; 6(2):667-74. PubMed ID: 17308062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cancer stem cell-targeted therapeutic approaches for overcoming trastuzumab resistance in HER2-positive breast cancer.
    Qiu Y; Yang L; Liu H; Luo X
    Stem Cells; 2021 Sep; 39(9):1125-1136. PubMed ID: 33837587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer.
    Bhat RR; Yadav P; Sahay D; Bhargava DK; Creighton CJ; Yazdanfard S; Al-Rawi A; Yadav V; Qin L; Nanda S; Sethunath V; Fu X; De Angelis C; Narkar VA; Osborne CK; Schiff R; Trivedi MV
    Breast Cancer Res Treat; 2018 Jul; 170(2):279-292. PubMed ID: 29574636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Trastuzumab Plus Pertuzumab Resistance Does Not Preclude Response to Lapatinib Plus Trastuzumab in HER2-Amplified Colorectal Cancer.
    Fakih MG
    Oncologist; 2018 Apr; 23(4):474-477. PubMed ID: 29330210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells.
    Papadakis E; Robson N; Yeomans A; Bailey S; Laversin S; Beers S; Sayan AE; Ashton-Key M; Schwaiger S; Stuppner H; Troppmair J; Packham G; Cutress R
    Oncotarget; 2016 Apr; 7(14):18851-64. PubMed ID: 26958811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A retrospective, multicenter study of the efficacy of lapatinib plus trastuzumab in HER2-positive metastatic breast cancer patients previously treated with trastuzumab, lapatinib, or both: the Trastyvere study.
    Gavilá J; De La Haba J; Bermejo B; Rodríguez-Lescure Á; Antón A; Ciruelos E; Brunet J; Muñoz-Couselo E; Santisteban M; Rodríguez Sánchez CA; Santaballa A; Sánchez Rovira P; García Sáenz JÁ; Ruiz-Borrego M; Guerrero-Zotano AL; Huerta M; Cotes-Sanchís A; Lao Romera J; Aguirre E; Cortés J; Llombart-Cussac A
    Clin Transl Oncol; 2020 Mar; 22(3):420-428. PubMed ID: 31203575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heregulin-expressing HER2-positive breast and gastric cancer exhibited heterogeneous susceptibility to the anti-HER2 agents lapatinib, trastuzumab and T-DM1.
    Nonagase Y; Yonesaka K; Kawakami H; Watanabe S; Haratani K; Takahama T; Takegawa N; Ueda H; Tanizaki J; Hayashi H; Yoshida T; Takeda M; Chiba Y; Tamura T; Nakagawa K; Tsurutani J
    Oncotarget; 2016 Dec; 7(51):84860-84871. PubMed ID: 27768588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patterns of HER2 Gene Amplification and Response to Anti-HER2 Therapies.
    Vicario R; Peg V; Morancho B; Zacarias-Fluck M; Zhang J; Martínez-Barriocanal Á; Navarro Jiménez A; Aura C; Burgues O; Lluch A; Cortés J; Nuciforo P; Rubio IT; Marangoni E; Deeds J; Boehm M; Schlegel R; Tabernero J; Mosher R; Arribas J
    PLoS One; 2015; 10(6):e0129876. PubMed ID: 26075403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeted Nanoparticle for Co-delivery of HER2 siRNA and a Taxane to Mirror the Standard Treatment of HER2+ Breast Cancer: Efficacy in Breast Tumor and Brain Metastasis.
    Ngamcherdtrakul W; Bejan DS; Cruz-Muñoz W; Reda M; Zaidan HY; Siriwon N; Marshall S; Wang R; Nelson MA; Rehwaldt JPC; Gray JW; Hynynen K; Yantasee W
    Small; 2022 Mar; 18(11):e2107550. PubMed ID: 35083840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells.
    Kim J; Lee J; Kim C; Choi J; Kim A
    Tumour Biol; 2016 May; 37(5):5811-9. PubMed ID: 26581908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer.
    Saatci Ö; Borgoni S; Akbulut Ö; Durmuş S; Raza U; Eyüpoğlu E; Alkan C; Akyol A; Kütük Ö; Wiemann S; Şahin Ö
    Oncogene; 2018 Apr; 37(17):2251-2269. PubMed ID: 29391599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer.
    Scaltriti M; Rojo F; Ocaña A; Anido J; Guzman M; Cortes J; Di Cosimo S; Matias-Guiu X; Ramon y Cajal S; Arribas J; Baselga J
    J Natl Cancer Inst; 2007 Apr; 99(8):628-38. PubMed ID: 17440164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs.
    Blancafort A; Giró-Perafita A; Oliveras G; Palomeras S; Turrado C; Campuzano Ò; Carrión-Salip D; Massaguer A; Brugada R; Palafox M; Gómez-Miragaya J; González-Suárez E; Puig T
    PLoS One; 2015; 10(6):e0131241. PubMed ID: 26107737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Clinical value of trastuzumab in the treatment of lapatinib-resistant HER2-positive metastatic breast cancer].
    Ma F; Xu BH; Li HH; Li Q; Zhang P; Yuan P; Wang JY; Fan Y; Li Q
    Zhonghua Zhong Liu Za Zhi; 2013 Jul; 35(7):521-4. PubMed ID: 24257305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer.
    Mercogliano MF; De Martino M; Venturutti L; Rivas MA; Proietti CJ; Inurrigarro G; Frahm I; Allemand DH; Deza EG; Ares S; Gercovich FG; Guzmán P; Roa JC; Elizalde PV; Schillaci R
    Clin Cancer Res; 2017 Feb; 23(3):636-648. PubMed ID: 27698002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficacy of Afatinib and Lapatinib Against
    Nakata S; Fujita M; Nakanishi H
    Anticancer Res; 2019 Nov; 39(11):5927-5932. PubMed ID: 31704817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.