These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 29879205)
1. Structures, dynamics, and hydrogen-bond interactions of antifreeze proteins in TIP4P/Ice water and their dependence on force fields. Lee H PLoS One; 2018; 13(6):e0198887. PubMed ID: 29879205 [TBL] [Abstract][Full Text] [Related]
2. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations. Ramya L; Ramakrishnan V Mol Inform; 2016 Jul; 35(6-7):268-77. PubMed ID: 27492241 [TBL] [Abstract][Full Text] [Related]
3. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes. Lee H J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671 [TBL] [Abstract][Full Text] [Related]
4. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. Midya US; Bandyopadhyay S J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212 [TBL] [Abstract][Full Text] [Related]
5. Interfacial Water Arrangement in the Ice-Bound State of an Antifreeze Protein: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S Langmuir; 2017 Jun; 33(22):5499-5510. PubMed ID: 28505449 [TBL] [Abstract][Full Text] [Related]
6. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341 [TBL] [Abstract][Full Text] [Related]
7. Operation of Kelvin Effect in the Activities of an Antifreeze Protein: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S J Phys Chem B; 2018 Mar; 122(12):3079-3087. PubMed ID: 29488381 [TBL] [Abstract][Full Text] [Related]
8. Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites? Strom CS; Liu XY; Jia Z Biophys J; 2005 Oct; 89(4):2618-27. PubMed ID: 16055536 [TBL] [Abstract][Full Text] [Related]
9. High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Modig K; Qvist J; Marshall CB; Davies PL; Halle B Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761 [TBL] [Abstract][Full Text] [Related]
10. Computational study on the function of water within a beta-helix antifreeze protein dimer and in the process of ice-protein binding. Yang Z; Zhou Y; Liu K; Cheng Y; Liu R; Chen G; Jia Z Biophys J; 2003 Oct; 85(4):2599-605. PubMed ID: 14507722 [TBL] [Abstract][Full Text] [Related]
11. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive Midya US; Bandyopadhyay S J Phys Chem B; 2023 Jan; 127(1):121-132. PubMed ID: 36594578 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice. Hudait A; Qiu Y; Odendahl N; Molinero V J Am Chem Soc; 2019 May; 141(19):7887-7898. PubMed ID: 31020830 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts. Daley ME; Graether SP; Sykes BD Biochemistry; 2004 Oct; 43(41):13012-7. PubMed ID: 15476394 [TBL] [Abstract][Full Text] [Related]
14. When are antifreeze proteins in solution essential for ice growth inhibition? Drori R; Davies PL; Braslavsky I Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514 [TBL] [Abstract][Full Text] [Related]
15. Structure and dynamics of a beta-helical antifreeze protein. Daley ME; Spyracopoulos L; Jia Z; Davies PL; Sykes BD Biochemistry; 2002 Apr; 41(17):5515-25. PubMed ID: 11969412 [TBL] [Abstract][Full Text] [Related]
16. Induced ice melting by the snow flea antifreeze protein from molecular dynamics simulations. Todde G; Whitman C; Hovmöller S; Laaksonen A J Phys Chem B; 2014 Nov; 118(47):13527-34. PubMed ID: 25353109 [TBL] [Abstract][Full Text] [Related]
17. The role of side chain conformational flexibility in surface recognition by Tenebrio molitor antifreeze protein. Daley ME; Sykes BD Protein Sci; 2003 Jul; 12(7):1323-31. PubMed ID: 12824479 [TBL] [Abstract][Full Text] [Related]
18. The biological function of an insect antifreeze protein simulated by molecular dynamics. Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A Elife; 2015 May; 4():. PubMed ID: 25951514 [TBL] [Abstract][Full Text] [Related]
19. Synergistic Effect of Hyperactive Antifreeze Protein on Inhibition of Gas-Hydrate Growth by Hydrophobic and Hydrophilic Groups. Zhang N; Du YT; Yao PQ; Huang HY; Zhang LR; Zhang FS; Liu JJ J Phys Chem B; 2023 Dec; 127(49):10469-10477. PubMed ID: 38018897 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin. Duboué-Dijon E; Laage D J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]