These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29879394)

  • 1. Quantification of thioether-linked glutathione modifications in human lens proteins.
    Wang Z; Schey KL
    Exp Eye Res; 2018 Oct; 175():83-89. PubMed ID: 29879394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human protein aging: modification and crosslinking through dehydroalanine and dehydrobutyrine intermediates.
    Wang Z; Lyons B; Truscott RJ; Schey KL
    Aging Cell; 2014 Apr; 13(2):226-34. PubMed ID: 24134651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging.
    Nye-Wood MG; Spraggins JM; Caprioli RM; Schey KL; Donaldson PJ; Grey AC
    Exp Eye Res; 2017 Jan; 154():70-78. PubMed ID: 27838309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L; Zhao WC; Yin XL; Ge JY; Bu ZG; Ge HY; Meng QF; Liu P
    Mol Biosyst; 2012 Mar; 8(3):888-901. PubMed ID: 22269969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S; Liu P; Zhang H; Li Z; Song Z; Zhang L; Chen S
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4182-91. PubMed ID: 21436267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DehydroalanylGly, a new post translational modification resulting from the breakdown of glutathione.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):907-913. PubMed ID: 29309825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathionylation of lens proteins through the formation of thioether bond.
    Linetsky M; LeGrand RD
    Mol Cell Biochem; 2005 Apr; 272(1-2):133-44. PubMed ID: 16010980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L; Liu D; Liu P; Yu Y
    Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shotgun proteomic analysis of S-thiolation sites of guinea pig lens nuclear crystallins following oxidative stress in vivo.
    Giblin FJ; David LL; Wilmarth PA; Leverenz VR; Simpanya MF
    Mol Vis; 2013; 19():267-80. PubMed ID: 23401655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is protein methylation in the human lens a result of non-enzymatic methylation by S-adenosylmethionine?
    Truscott RJ; Mizdrak J; Friedrich MG; Hooi MY; Lyons B; Jamie JF; Davies MJ; Wilmarth PA; David LL
    Exp Eye Res; 2012 Jun; 99():48-54. PubMed ID: 22542751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of GSH in alphaA-expressing human lens epithelial cell lines and in alphaA knockout mouse lenses.
    Kannan R; Ouyang B; Wawrousek E; Kaplowitz N; Andley UP
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):409-16. PubMed ID: 11157875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens.
    Yanshole LV; Cherepanov IV; Snytnikova OA; Yanshole VV; Sagdeev RZ; Tsentalovich YP
    Mol Vis; 2013; 19():2196-208. PubMed ID: 24227915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses.
    Huang CH; Wang YT; Tsai CF; Chen YJ; Lee JS; Chiou SH
    Mol Vis; 2011 Jan; 17():186-98. PubMed ID: 21264232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling.
    Asomugha CO; Gupta R; Srivastava OP
    Mol Vis; 2010 Mar; 16():476-94. PubMed ID: 20352024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging.
    Lou MF; Xu GT; Cui XL
    Curr Eye Res; 1995 Oct; 14(10):951-8. PubMed ID: 8549161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses.
    Fujii N; Sakaue H; Sasaki H; Fujii N
    J Biol Chem; 2012 Nov; 287(47):39992-40002. PubMed ID: 23007399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP; McArthur JD; Truscott RJ; Aquilina JA
    Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.