These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 29879474)

  • 41. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.
    Jie B; Liu M; Shen D
    Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ventrolateral Motor Thalamus Abnormal Connectivity in Essential Tremor Before and After Thalamotomy: A Resting-State Functional Magnetic Resonance Imaging Study.
    Tuleasca C; Najdenovska E; Régis J; Witjas T; Girard N; Champoudry J; Faouzi M; Thiran JP; Cuadra MB; Levivier M; Van De Ville D
    World Neurosurg; 2018 May; 113():e453-e464. PubMed ID: 29475059
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
    Suk HI; Wee CY; Lee SW; Shen D
    Neuroimage; 2016 Apr; 129():292-307. PubMed ID: 26774612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.
    Cheng L; Zhu Y; Sun J; Deng L; He N; Yang Y; Ling H; Ayaz H; Fu Y; Tong S
    Int J Neural Syst; 2018 Sep; 28(7):1850002. PubMed ID: 29607681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection for Mild Cognitive Impairment.
    Zhang H; Chen X; Shi F; Li G; Kim M; Giannakopoulos P; Haller S; Shen D
    J Alzheimers Dis; 2016 Oct; 54(3):1095-1112. PubMed ID: 27567817
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G; Schmah T; Churchill NW; Berman MG; Grady CL; Strother SC
    Neuroimage; 2014 Aug; 96():117-32. PubMed ID: 24705202
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly adaptive tests for group differences in brain functional connectivity.
    Kim J; Pan W;
    Neuroimage Clin; 2015; 9():625-39. PubMed ID: 26740916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimating dynamic brain functional networks using multi-subject fMRI data.
    Kundu S; Ming J; Pierce J; McDowell J; Guo Y
    Neuroimage; 2018 Dec; 183():635-649. PubMed ID: 30048750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging.
    Salami A; Pudas S; Nyberg L
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17654-9. PubMed ID: 25422457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Age-related changes in the association of resting-state fMRI signal variability and global functional connectivity in non-demented healthy people.
    Xie W; Peng CK; Shen J; Lin CP; Tsai SJ; Wang S; Chu Q; Yang AC
    Psychiatry Res; 2020 Sep; 291():113257. PubMed ID: 32619826
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity.
    Dansereau C; Benhajali Y; Risterucci C; Pich EM; Orban P; Arnold D; Bellec P
    Neuroimage; 2017 Apr; 149():220-232. PubMed ID: 28161310
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disentangling time series between brain tissues improves fMRI data quality using a time-dependent deep neural network.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Cordes D;
    Neuroimage; 2020 Dec; 223():117340. PubMed ID: 32898682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis.
    Hlinka J; Alexakis C; Diukova A; Liddle PF; Auer DP
    Neuroimage; 2010 Oct; 53(1):239-46. PubMed ID: 20538065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure.
    Abdelnour F; Dayan M; Devinsky O; Thesen T; Raj A
    Neuroimage; 2018 May; 172():728-739. PubMed ID: 29454104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
    Zhu Y; Cribben I
    Brain Connect; 2018 Apr; 8(3):139-165. PubMed ID: 29634321
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest.
    Spreng RN; Stevens WD; Viviano JD; Schacter DL
    Neurobiol Aging; 2016 Sep; 45():149-160. PubMed ID: 27459935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A probabilistic approach to discovering dynamic full-brain functional connectivity patterns.
    Manning JR; Zhu X; Willke TL; Ranganath R; Stachenfeld K; Hasson U; Blei DM; Norman KA
    Neuroimage; 2018 Oct; 180(Pt A):243-252. PubMed ID: 29448074
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resting state fMRI in Alzheimer's disease: beyond the default mode network.
    Agosta F; Pievani M; Geroldi C; Copetti M; Frisoni GB; Filippi M
    Neurobiol Aging; 2012 Aug; 33(8):1564-78. PubMed ID: 21813210
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maximal flexibility in dynamic functional connectivity with critical dynamics revealed by fMRI data analysis and brain network modelling.
    Song B; Ma N; Liu G; Zhang H; Yu L; Liu L; Zhang J
    J Neural Eng; 2019 Jul; 16(5):056002. PubMed ID: 31071699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.