BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29879504)

  • 1. Histone variants H3.3 and H2A.Z are incorporated into the β-globin locus during transcription activation via different mechanisms.
    Kang J; Kim YW; Kim A
    Biochim Biophys Acta Gene Regul Mech; 2018 Jun; ():. PubMed ID: 29879504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites.
    Kim J; Kang J; Kim YW; Kim A
    FASEB J; 2021 Jun; 35(6):e21669. PubMed ID: 34033138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythroid activator NF-E2, TAL1 and KLF1 play roles in forming the LCR HSs in the human adult β-globin locus.
    Kim YW; Yun WJ; Kim A
    Int J Biochem Cell Biol; 2016 Jun; 75():45-52. PubMed ID: 27026582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin.
    Chen P; Zhao J; Wang Y; Wang M; Long H; Liang D; Huang L; Wen Z; Li W; Li X; Feng H; Zhao H; Zhu P; Li M; Wang QF; Li G
    Genes Dev; 2013 Oct; 27(19):2109-24. PubMed ID: 24065740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.
    Sawado T; Igarashi K; Groudine M
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10226-31. PubMed ID: 11517325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin structure of the LCR in the human β-globin locus transcribing the adult δ- and β-globin genes.
    Kim S; Kim YW; Shim SH; Kim CG; Kim A
    Int J Biochem Cell Biol; 2012 Mar; 44(3):505-13. PubMed ID: 22178075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta-globin locus control region HS2 and HS3 interact structurally and functionally.
    Jackson DA; McDowell JC; Dean A
    Nucleic Acids Res; 2003 Feb; 31(4):1180-90. PubMed ID: 12582237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.
    Kim K; Kim A
    Int J Biochem Cell Biol; 2010 Sep; 42(9):1517-24. PubMed ID: 20561915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone acetylation contributes to chromatin looping between the locus control region and globin gene by influencing hypersensitive site formation.
    Kim YW; Kim A
    Biochim Biophys Acta; 2013 Sep; 1829(9):963-9. PubMed ID: 23607989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus.
    Schübeler D; Francastel C; Cimbora DM; Reik A; Martin DI; Groudine M
    Genes Dev; 2000 Apr; 14(8):940-50. PubMed ID: 10783166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region.
    Gong QH; McDowell JC; Dean A
    Mol Cell Biol; 1996 Nov; 16(11):6055-64. PubMed ID: 8887635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergism between hypersensitive sites confers long-range gene activation by the beta-globin locus control region.
    Bresnick EH; Tze L
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4566-71. PubMed ID: 9114030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human beta-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells.
    Tanimoto K; Sugiura A; Omori A; Felsenfeld G; Engel JD; Fukamizu A
    Mol Cell Biol; 2003 Dec; 23(24):8946-52. PubMed ID: 14645507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental stage differences in chromatin subdomains of the beta-globin locus.
    Kim A; Dean A
    Proc Natl Acad Sci U S A; 2004 May; 101(18):7028-33. PubMed ID: 15105444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial repression of human gamma-globin genes by LCR element HS3 when linked to beta-globin genes and LCR element HS2 in MEL cells.
    Stoeckert CJ; Cheng H
    Am J Hematol; 1996 Mar; 51(3):220-8. PubMed ID: 8619403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Biochemical Characterization of the Nucleosome Containing Variants H3.3 and H2A.Z.
    Jung H; Sokolova V; Lee G; Stevens VR; Tan D
    Epigenomes; 2024 May; 8(2):. PubMed ID: 38920622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosome stability mediated by histone variants H3.3 and H2A.Z.
    Jin C; Felsenfeld G
    Genes Dev; 2007 Jun; 21(12):1519-29. PubMed ID: 17575053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer-promoter interaction in the β-globin locus.
    Kang J; Kim YW; Park S; Kang Y; Kim A
    FASEB J; 2021 Aug; 35(8):e21768. PubMed ID: 34245617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture.
    Fang X; Sun J; Xiang P; Yu M; Navas PA; Peterson KR; Stamatoyannopoulos G; Li Q
    Mol Cell Biol; 2005 Aug; 25(16):7033-41. PubMed ID: 16055715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion.
    Navas PA; Peterson KR; Li Q; Skarpidi E; Rohde A; Shaw SE; Clegg CH; Asano H; Stamatoyannopoulos G
    Mol Cell Biol; 1998 Jul; 18(7):4188-96. PubMed ID: 9632803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.