BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 29879538)

  • 1. Wearable humidity sensor based on porous graphene network for respiration monitoring.
    Pang Y; Jian J; Tu T; Yang Z; Ling J; Li Y; Wang X; Qiao Y; Tian H; Yang Y; Ren TL
    Biosens Bioelectron; 2018 Sep; 116():123-129. PubMed ID: 29879538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Temperature Sensors with Enhanced Sensitivity by Engineering Microcrack Morphology in PEDOT:PSS-PDMS Sensors.
    Yu Y; Peng S; Blanloeuil P; Wu S; Wang CH
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36578-36588. PubMed ID: 32667193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stretchable and Sensitive Flexible Strain Sensor Based on Fe NWs/Graphene/PEDOT:PSS with a Porous Structure.
    Yang P; Xiang S; Li R; Ruan H; Chen D; Zhou Z; Huang X; Liu Z
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors.
    Taccola S; Greco F; Zucca A; Innocenti C; Fernández Cde J; Campo G; Sangregorio C; Mazzolai B; Mattoli V
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6324-32. PubMed ID: 23802632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications.
    Lo LW; Zhao J; Wan H; Wang Y; Chakrabartty S; Wang C
    ACS Appl Mater Interfaces; 2021 May; 13(18):21693-21702. PubMed ID: 33926183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte.
    Manjakkal L; Pullanchiyodan A; Yogeswaran N; Hosseini ES; Dahiya R
    Adv Mater; 2020 Jun; 32(24):e1907254. PubMed ID: 32390218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Uniform Water Microdroplets on Wrinkled Graphene for Ultrafast Humidity Sensing.
    Zhen Z; Li Z; Zhao X; Zhong Y; Zhang L; Chen Q; Yang T; Zhu H
    Small; 2018 Apr; 14(15):e1703848. PubMed ID: 29517135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition.
    Sharma S; Chhetry A; Sharifuzzaman M; Yoon H; Park JY
    ACS Appl Mater Interfaces; 2020 May; 12(19):22212-22224. PubMed ID: 32302099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene.
    Xu G; Jarjes ZA; Desprez V; Kilmartin PA; Travas-Sejdic J
    Biosens Bioelectron; 2018 Jun; 107():184-191. PubMed ID: 29459331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional and Ultrasensitive-Reduced Graphene Oxide and Pen Ink/Polyvinyl Alcohol-Decorated Modal/Spandex Fabric for High-Performance Wearable Sensors.
    Bi S; Hou L; Dong W; Lu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):2100-2109. PubMed ID: 33347284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid-response, reversible and flexible humidity sensing platform using a hydrophobic and porous substrate.
    Wu J; Wu Z; Tao K; Liu C; Yang BR; Xie X; Lu X
    J Mater Chem B; 2019 Mar; 7(12):2063-2073. PubMed ID: 32254810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin.
    Qiu J; Guo X; Chu R; Wang S; Zeng W; Qu L; Zhao Y; Yan F; Xing G
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40716-40725. PubMed ID: 31596567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Flexible Pressure Sensor with Ink Printed Porous Graphene for Continuous Cardiovascular Status Monitoring.
    Peng Y; Zhou J; Song X; Pang K; Samy A; Hao Z; Wang J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) transistors in chemical and biological sensors.
    Nikolou M; Malliaras GG
    Chem Rec; 2008; 8(1):13-22. PubMed ID: 18302284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface.
    Lan L; Le X; Dong H; Xie J; Ying Y; Ping J
    Biosens Bioelectron; 2020 Oct; 165():112360. PubMed ID: 32729493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible and metal-free light-emitting electrochemical cells based on graphene and PEDOT-PSS as the electrode materials.
    Matyba P; Yamaguchi H; Chhowalla M; Robinson ND; Edman L
    ACS Nano; 2011 Jan; 5(1):574-80. PubMed ID: 21189028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and Compressible PEDOT:PSS@Melamine Conductive Sponge Prepared via One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection.
    Ding Y; Yang J; Tolle CR; Zhu Z
    ACS Appl Mater Interfaces; 2018 May; 10(18):16077-16086. PubMed ID: 29651841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust and homogeneous porous poly(3,4-ethylenedioxythiophene)/graphene thin film for high-efficiency laser desorption/ionization analysis of estrogens in biological samples.
    Huang S; Ye N; Chen G; Ou R; Huang Y; Zhu F; Shen J; Ouyang G
    Talanta; 2019 Apr; 195():290-297. PubMed ID: 30625545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.
    Wang W; Xu G; Cui XT; Sheng G; Luo X
    Biosens Bioelectron; 2014 Aug; 58():153-6. PubMed ID: 24632460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring.
    Davoodi E; Montazerian H; Haghniaz R; Rashidi A; Ahadian S; Sheikhi A; Chen J; Khademhosseini A; Milani AS; Hoorfar M; Toyserkani E
    ACS Nano; 2020 Feb; 14(2):1520-1532. PubMed ID: 31904931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.