BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29879561)

  • 1. Detecting the bioaccumulation patterns of chemicals through data-driven approaches.
    Grisoni F; Consonni V; Vighi M
    Chemosphere; 2018 Oct; 208():273-284. PubMed ID: 29879561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for predicting the rate constant for uptake of organic chemicals from water by fish.
    Brooke DN; Crookes MJ; Merckel DA
    Environ Toxicol Chem; 2012 Nov; 31(11):2465-71. PubMed ID: 22865682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of bioconcentration and biomagnification factors for poorly water-soluble chemicals using common carp (Cyprinus carpio L.).
    Inoue Y; Hashizume N; Yoshida T; Murakami H; Suzuki Y; Koga Y; Takeshige R; Kikushima E; Yakata N; Otsuka M
    Arch Environ Contam Toxicol; 2012 Aug; 63(2):241-8. PubMed ID: 22484798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors.
    Lo JC; Letinski DJ; Parkerton TF; Campbell DA; Gobas FA
    Environ Sci Technol; 2016 Dec; 50(24):13299-13308. PubMed ID: 27993034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical relationships between metrics of chemical bioaccumulation in fish.
    Mackay D; Arnot JA; Gobas FA; Powell DE
    Environ Toxicol Chem; 2013 Jul; 32(7):1459-66. PubMed ID: 23440888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of bioaccumulation data for hexachlorobenzene to derive water quality standards according to the EU-WFD methodology.
    Moermond CT; Verbruggen EM
    Integr Environ Assess Manag; 2013 Jan; 9(1):87-97. PubMed ID: 22791265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the bioaccumulation potential of anionic organic compounds using a permanent rainbow trout liver cell line.
    Balk F; Hollender J; Schirmer K
    Environ Int; 2023 Apr; 174():107798. PubMed ID: 36965398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are current regulatory log K
    Gimeno S; Allan D; Paul K; Remuzat P; Collard M
    Regul Toxicol Pharmacol; 2024 Feb; 147():105556. PubMed ID: 38158033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment.
    McGeer JC; Brix KV; Skeaff JM; DeForest DK; Brigham SI; Adams WJ; Green A
    Environ Toxicol Chem; 2003 May; 22(5):1017-37. PubMed ID: 12729211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR).
    Ivanciuc T; Ivanciuc O; Klein DJ
    Mol Divers; 2006 May; 10(2):133-45. PubMed ID: 16710809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the relationship between bioconcentration factor and distribution coefficient based on class-based compounds: The factors that affect bioconcentration.
    Wang Y; Wen Y; Li JJ; He J; Qin WC; Su LM; Zhao YH
    Environ Toxicol Pharmacol; 2014 Sep; 38(2):388-96. PubMed ID: 25124515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.
    Moses SK; Harley JR; Lieske CL; Muir DCG; Whiting AV; O'Hara TM
    Mar Pollut Bull; 2015 Nov; 100(1):122-127. PubMed ID: 26440545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reductionist mechanistic model for bioconcentration of neutral and weakly polar organic compounds in fish.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Sep; 32(9):2089-99. PubMed ID: 23703865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Reduced Model for Bioconcentration and Biotransformation of Neutral Organic Compounds in Midge.
    Kuo DTF; Chen CC
    Environ Toxicol Chem; 2021 Jan; 40(1):57-71. PubMed ID: 33044762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a database of dietary bioaccumulation test data for organic chemicals in fish.
    Arnot JA; Quinn CL
    Environ Sci Technol; 2015 Apr; 49(8):4783-96. PubMed ID: 25821900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PBT assessment under REACH: Screening for low aquatic bioaccumulation with QSAR classifications based on physicochemical properties to replace BCF in vivo testing on fish.
    Nendza M; Kühne R; Lombardo A; Strempel S; Schüürmann G
    Sci Total Environ; 2018 Mar; 616-617():97-106. PubMed ID: 29107783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine.
    Liu H; Yao X; Zhang R; Liu M; Hu Z; Fan B
    Chemosphere; 2006 May; 63(5):722-33. PubMed ID: 16226786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of the bioaccumulation factor to screen chemicals for bioaccumulation potential.
    Costanza J; Lynch DG; Boethling RS; Arnot JA
    Environ Toxicol Chem; 2012 Oct; 31(10):2261-8. PubMed ID: 22821825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved prediction of fish bioconcentration factor of hydrophobic chemicals.
    Dearden JC; Shinnawei NM
    SAR QSAR Environ Res; 2004; 15(5-6):449-55. PubMed ID: 15669701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting elimination half live as an indicator for bioaccumulation in fish and terrestrial mammals.
    Goss KU; Linden L; Ulrich N; Schlechtriem C
    Chemosphere; 2018 Nov; 210():341-346. PubMed ID: 30007188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.