These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 29879656)

  • 1. Oxidation of cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) with chlorine, permanganate, ozone, hydrogen peroxide and hydroxyl radical.
    Chen YT; Chen WR; Lin TF
    Water Res; 2018 Oct; 142():187-195. PubMed ID: 29879656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) using ozone process: influencing factors and mechanism.
    Yan B; Han C; Liu Z; Wu G; Wang S; Li J; Xia W; Cui F
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47873-47881. PubMed ID: 36749520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects and mechanism on the removal of neurotoxin β-N-methylamino-l-alanine (BMAA) by chlorination.
    Yan B; Liu Z; Liu Y; Huang R; Xu Y; Liu D; Cui F; Shi W
    Sci Total Environ; 2020 Feb; 703():135513. PubMed ID: 31761374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction Pathways and Kinetics of a Cyanobacterial Neurotoxin β-N-Methylamino-L-Alanine (BMAA) during Chlorination.
    Chen YT; Chen WR; Liu ZQ; Lin TF
    Environ Sci Technol; 2017 Feb; 51(3):1303-1311. PubMed ID: 28075568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate--a comparative study.
    Gao S; Zhao Z; Xu Y; Tian J; Qi H; Lin W; Cui F
    J Hazard Mater; 2014 Jun; 274():258-69. PubMed ID: 24793298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of β-N-methylamino-l-alanine (BMAA) during UV/chlorine process: Influence factors, transformation pathway and DBP formation.
    Sun J; Zhou S; Sheng D; Li N; Wang J; Jiang C
    Chemosphere; 2021 Dec; 284():131426. PubMed ID: 34323795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and mechanistic aspects of selenite oxidation by chlorine, bromine, monochloramine, ozone, permanganate, and hydrogen peroxide.
    Liu S; Salhi E; Huang W; Diao K; von Gunten U
    Water Res; 2019 Nov; 164():114876. PubMed ID: 31400591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate.
    Rodríguez E; Sordo A; Metcalf JS; Acero JL
    Water Res; 2007 May; 41(9):2048-56. PubMed ID: 17353030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation mechanisms of cyanobacteria neurotoxin β-N-methylamino-l-alanine (BMAA) during UV
    Yan B; Wang S; Liu Z; Wang D; Shi W; Cui F
    Chemosphere; 2022 Sep; 302():134939. PubMed ID: 35561764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities.
    Önnby L; Salhi E; McKay G; Rosario-Ortiz FL; von Gunten U
    Water Res; 2018 Nov; 144():64-75. PubMed ID: 30014980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical).
    Lee Y; von Gunten U
    Water Res; 2010 Jan; 44(2):555-66. PubMed ID: 20015530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.
    De Vera GA; Stalter D; Gernjak W; Weinberg HS; Keller J; Farré MJ
    Water Res; 2015 Dec; 87():49-58. PubMed ID: 26378731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ozonation characteristics of bisphenol A in water.
    Lee J; Park H; Yoon J
    Environ Technol; 2003 Feb; 24(2):241-8. PubMed ID: 12666793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.
    Rodríguez E; Onstad GD; Kull TP; Metcalf JS; Acero JL; von Gunten U
    Water Res; 2007 Aug; 41(15):3381-93. PubMed ID: 17583762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of β-N-methylamino-l-alanine (BMAA) by UV/peracetic acid system: Influencing factors, degradation mechanism and DBP formation.
    Zhou S; Huang J; Bu L; Li G; Zhu S
    Chemosphere; 2022 Nov; 307(Pt 4):136083. PubMed ID: 35988765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence of β-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia.
    Violi JP; Mitrovic SM; Colville A; Main BJ; Rodgers KJ
    Ecotoxicol Environ Saf; 2019 May; 172():72-81. PubMed ID: 30682636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition effect of chlorine ion on hydroxyl radical generation in UV-H2O2 process.
    Tsuneda S; Ishihara Y; Hamachi M; Hirata A
    Water Sci Technol; 2002; 46(11-12):33-8. PubMed ID: 12523729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of oxidation on fulvic acids composition and biodegradability.
    Kozyatnyk I; Świetlik J; Raczyk-Stanisławiak U; Dąbrowska A; Klymenko N; Nawrocki J
    Chemosphere; 2013 Aug; 92(10):1335-42. PubMed ID: 23746389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation.
    Onstad GD; Strauch S; Meriluoto J; Codd GA; Von Gunten U
    Environ Sci Technol; 2007 Jun; 41(12):4397-404. PubMed ID: 17626442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ozonation of drinking water: part I. Oxidation kinetics and product formation.
    von Gunten U
    Water Res; 2003 Apr; 37(7):1443-67. PubMed ID: 12600374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.