BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29880017)

  • 21. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unabridged Analysis of Human Histone H3 by Differential Top-Down Mass Spectrometry Reveals Hypermethylated Proteoforms from MMSET/NSD2 Overexpression.
    Zheng Y; Fornelli L; Compton PD; Sharma S; Canterbury J; Mullen C; Zabrouskov V; Fellers RT; Thomas PM; Licht JD; Senko MW; Kelleher NL
    Mol Cell Proteomics; 2016 Mar; 15(3):776-90. PubMed ID: 26272979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Top-"Double-Down" Mass Spectrometry of Histone H4 Proteoforms: Tandem Ultraviolet-Photon and Mobility/Mass-Selected Electron Capture Dissociations.
    Jeanne Dit Fouque K; Miller SA; Pham K; Bhanu NV; Cintron-Diaz YL; Leyva D; Kaplan D; Voinov VG; Ridgeway ME; Park MA; Garcia BA; Fernandez-Lima F
    Anal Chem; 2022 Nov; 94(44):15377-15385. PubMed ID: 36282112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetic profiling of multidrug-resistant human MCF-7 breast adenocarcinoma cells reveals novel hyper- and hypomethylated targets.
    Chekhun VF; Lukyanova NY; Kovalchuk O; Tryndyak VP; Pogribny IP
    Mol Cancer Ther; 2007 Mar; 6(3):1089-98. PubMed ID: 17363502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential modulation of nuclear texture, histone acetylation, and MDR1 gene expression in human drug-sensitive and -resistant OV1 cell lines.
    Yatouji S; El-Khoury V; Trentesaux C; Trussardi-Regnier A; Benabid R; Bontems F; Dufer J
    Int J Oncol; 2007 Apr; 30(4):1003-9. PubMed ID: 17332941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histone modification therapy of cancer.
    Biancotto C; Frigè G; Minucci S
    Adv Genet; 2010; 70():341-86. PubMed ID: 20920755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA methyltransferase inhibitor RG108 and histone deacetylase inhibitors cooperate to enhance NB4 cell differentiation and E-cadherin re-expression by chromatin remodelling.
    Savickiene J; Treigyte G; Jazdauskaite A; Borutinskaite VV; Navakauskiene R
    Cell Biol Int; 2012 Nov; 36(11):1067-78. PubMed ID: 22845560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specificity of the SUV4-20H1 and SUV4-20H2 protein lysine methyltransferases and methylation of novel substrates.
    Weirich S; Kudithipudi S; Jeltsch A
    J Mol Biol; 2016 Jun; 428(11):2344-2358. PubMed ID: 27105552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SUV4-20 activity in the preimplantation mouse embryo controls timely replication.
    Eid A; Rodriguez-Terrones D; Burton A; Torres-Padilla ME
    Genes Dev; 2016 Nov; 30(22):2513-2526. PubMed ID: 27920088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic regulation of GATA4 expression by histone modification in AFP-producing gastric adenocarcinoma.
    Yamamura N; Kishimoto T
    Exp Mol Pathol; 2012 Aug; 93(1):35-9. PubMed ID: 22472323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies.
    Hayashi-Takanaka Y; Maehara K; Harada A; Umehara T; Yokoyama S; Obuse C; Ohkawa Y; Nozaki N; Kimura H
    Chromosome Res; 2015 Dec; 23(4):753-66. PubMed ID: 26343042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase.
    Fang J; Feng Q; Ketel CS; Wang H; Cao R; Xia L; Erdjument-Bromage H; Tempst P; Simon JA; Zhang Y
    Curr Biol; 2002 Jul; 12(13):1086-99. PubMed ID: 12121615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin flow cytometry identifies changes in epigenetic cell states.
    Obier N; Müller AM
    Cells Tissues Organs; 2010; 191(3):167-74. PubMed ID: 19776550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global histone modifications in Fumonisin B1 exposure in rat kidney epithelial cells.
    Sancak D; Ozden S
    Toxicol In Vitro; 2015 Oct; 29(7):1809-15. PubMed ID: 26208285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin modifications remodel cardiac gene expression.
    Mathiyalagan P; Keating ST; Du XJ; El-Osta A
    Cardiovasc Res; 2014 Jul; 103(1):7-16. PubMed ID: 24812277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new epigenetic marker: the replication-coupled, cell cycle-dependent, dual modification of the histone H4 tail.
    Fidlerová H; Kalinová J; Blechová M; Velek J; Raska I
    J Struct Biol; 2009 Jul; 167(1):76-82. PubMed ID: 19348949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualization of the dynamics of histone modifications and their crosstalk using PTM-CrossTalkMapper.
    Kirsch R; Jensen ON; Schwämmle V
    Methods; 2020 Dec; 184():78-85. PubMed ID: 31978537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expeditious Extraction of Histones from Limited Cells or Tissue Samples and Quantitative Top-Down Proteomic Analysis.
    Holt MV; Wang T; Young NL
    Curr Protoc; 2021 Feb; 1(2):e26. PubMed ID: 33534192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SAHA treatment reveals the link between histone lysine acetylation and proteome in nonsmall cell lung cancer A549 Cells.
    Wu Q; Xu W; Cao L; Li X; He T; Wu Z; Li W
    J Proteome Res; 2013 Sep; 12(9):4064-73. PubMed ID: 23909948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone deacetylase-dependent establishment and maintenance of broad low-level histone acetylation within a tissue-specific chromatin domain.
    Im H; Grass JA; Christensen HM; Perkins A; Bresnick EH
    Biochemistry; 2002 Dec; 41(51):15152-60. PubMed ID: 12484752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.