BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

984 related articles for article (PubMed ID: 29880062)

  • 1. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative.
    Wang J; Kurilshikov A; Radjabzadeh D; Turpin W; Croitoru K; Bonder MJ; Jackson MA; Medina-Gomez C; Frost F; Homuth G; Rühlemann M; Hughes D; Kim HN; ; Spector TD; Bell JT; Steves CJ; Timpson N; Franke A; Wijmenga C; Meyer K; Kacprowski T; Franke L; Paterson AD; Raes J; Kraaij R; Zhernakova A
    Microbiome; 2018 Jun; 6(1):101. PubMed ID: 29880062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses.
    Hughes DA; Bacigalupe R; Wang J; Rühlemann MC; Tito RY; Falony G; Joossens M; Vieira-Silva S; Henckaerts L; Rymenans L; Verspecht C; Ring S; Franke A; Wade KH; Timpson NJ; Raes J
    Nat Microbiol; 2020 Sep; 5(9):1079-1087. PubMed ID: 32572223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale association analyses identify host factors influencing human gut microbiome composition.
    Kurilshikov A; Medina-Gomez C; Bacigalupe R; Radjabzadeh D; Wang J; Demirkan A; Le Roy CI; Raygoza Garay JA; Finnicum CT; Liu X; Zhernakova DV; Bonder MJ; Hansen TH; Frost F; Rühlemann MC; Turpin W; Moon JY; Kim HN; Lüll K; Barkan E; Shah SA; Fornage M; Szopinska-Tokov J; Wallen ZD; Borisevich D; Agreus L; Andreasson A; Bang C; Bedrani L; Bell JT; Bisgaard H; Boehnke M; Boomsma DI; Burk RD; Claringbould A; Croitoru K; Davies GE; van Duijn CM; Duijts L; Falony G; Fu J; van der Graaf A; Hansen T; Homuth G; Hughes DA; Ijzerman RG; Jackson MA; Jaddoe VWV; Joossens M; Jørgensen T; Keszthelyi D; Knight R; Laakso M; Laudes M; Launer LJ; Lieb W; Lusis AJ; Masclee AAM; Moll HA; Mujagic Z; Qibin Q; Rothschild D; Shin H; Sørensen SJ; Steves CJ; Thorsen J; Timpson NJ; Tito RY; Vieira-Silva S; Völker U; Völzke H; Võsa U; Wade KH; Walter S; Watanabe K; Weiss S; Weiss FU; Weissbrod O; Westra HJ; Willemsen G; Payami H; Jonkers DMAE; Arias Vasquez A; de Geus EJC; Meyer KA; Stokholm J; Segal E; Org E; Wijmenga C; Kim HL; Kaplan RC; Spector TD; Uitterlinden AG; Rivadeneira F; Franke A; Lerch MM; Franke L; Sanna S; D'Amato M; Pedersen O; Paterson AD; Kraaij R; Raes J; Zhernakova A
    Nat Genet; 2021 Feb; 53(2):156-165. PubMed ID: 33462485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gene co-association network regulating gut microbial communities in a Duroc pig population.
    Reverter A; Ballester M; Alexandre PA; Mármol-Sánchez E; Dalmau A; Quintanilla R; Ramayo-Caldas Y
    Microbiome; 2021 Feb; 9(1):52. PubMed ID: 33612109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of gut microbiota of a healthy population and covariates affecting microbial variation in two large Japanese cohorts.
    Park J; Kato K; Murakami H; Hosomi K; Tanisawa K; Nakagata T; Ohno H; Konishi K; Kawashima H; Chen YA; Mohsen A; Xiao JZ; Odamaki T; Kunisawa J; Mizuguchi K; Miyachi M
    BMC Microbiol; 2021 May; 21(1):151. PubMed ID: 34016052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Association Studies of the Human Gut Microbiota.
    Davenport ER; Cusanovich DA; Michelini K; Barreiro LB; Ober C; Gilad Y
    PLoS One; 2015; 10(11):e0140301. PubMed ID: 26528553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of reduced metagenome and 16S rRNA gene sequencing for determination of genetic diversity and mother-child overlap of the gut associated microbiota.
    Ravi A; Avershina E; Angell IL; Ludvigsen J; Manohar P; Padmanaban S; Nachimuthu R; Snipen L; Rudi K
    J Microbiol Methods; 2018 Jun; 149():44-52. PubMed ID: 29501688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host genetics and microbiome associations through the lens of genome wide association studies.
    Weissbrod O; Rothschild D; Barkan E; Segal E
    Curr Opin Microbiol; 2018 Aug; 44():9-19. PubMed ID: 29909175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals.
    Scepanovic P; Hodel F; Mondot S; Partula V; Byrd A; Hammer C; Alanio C; Bergstedt J; Patin E; Touvier M; Lantz O; Albert ML; Duffy D; Quintana-Murci L; Fellay J;
    Microbiome; 2019 Sep; 7(1):130. PubMed ID: 31519223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling.
    Lau JT; Whelan FJ; Herath I; Lee CH; Collins SM; Bercik P; Surette MG
    Genome Med; 2016 Jul; 8(1):72. PubMed ID: 27363992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinION™ nanopore sequencing confers species-level resolution.
    Matsuo Y; Komiya S; Yasumizu Y; Yasuoka Y; Mizushima K; Takagi T; Kryukov K; Fukuda A; Morimoto Y; Naito Y; Okada H; Bono H; Nakagawa S; Hirota K
    BMC Microbiol; 2021 Jan; 21(1):35. PubMed ID: 33499799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taxonomic composition and variation in the gut microbiota of laboratory mice.
    Yang J; Chun J
    Mamm Genome; 2021 Aug; 32(4):297-310. PubMed ID: 33893864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.
    Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA
    BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between the pig genome and its gut microbiota composition.
    Crespo-Piazuelo D; Migura-Garcia L; Estellé J; Criado-Mesas L; Revilla M; Castelló A; Muñoz M; García-Casco JM; Fernández AI; Ballester M; Folch JM
    Sci Rep; 2019 Jun; 9(1):8791. PubMed ID: 31217427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts.
    Tinker KA; Ottesen EA
    Appl Environ Microbiol; 2016 Nov; 82(22):6603-6610. PubMed ID: 27590811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key features of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice.
    Doms S; Fokt H; Rühlemann MC; Chung CJ; Kuenstner A; Ibrahim SM; Franke A; Turner LM; Baines JF
    Elife; 2022 Jul; 11():. PubMed ID: 35866635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity, compositional and functional differences between gut microbiota of children and adults.
    Radjabzadeh D; Boer CG; Beth SA; van der Wal P; Kiefte-De Jong JC; Jansen MAE; Konstantinov SR; Peppelenbosch MP; Hays JP; Jaddoe VWV; Ikram MA; Rivadeneira F; van Meurs JBJ; Uitterlinden AG; Medina-Gomez C; Moll HA; Kraaij R
    Sci Rep; 2020 Jan; 10(1):1040. PubMed ID: 31974429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing a causal relationship between gut microbiota and lung cancer: a Mendelian randomization study.
    Li Y; Wang K; Zhang Y; Yang J; Wu Y; Zhao M
    Front Cell Infect Microbiol; 2023; 13():1200299. PubMed ID: 37829610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide Mendelian randomization identifies putatively causal gut microbiota for multiple peptic ulcer diseases.
    Zhao J; Hou Y; Xie T; Zhu Y; Feng X; Zhang Y; Yang Z; Gong W
    Front Immunol; 2023; 14():1260780. PubMed ID: 37869000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Relationship Between the Human Genome and Microbiome Comes into View.
    Goodrich JK; Davenport ER; Clark AG; Ley RE
    Annu Rev Genet; 2017 Nov; 51():413-433. PubMed ID: 28934590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.