These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29880216)

  • 1. Domain contributions to antibody retention in multimodal chromatography systems.
    Robinson J; Roush D; Cramer S
    J Chromatogr A; 2018 Aug; 1563():89-98. PubMed ID: 29880216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of pH on antibody retention in multimodal cation exchange chromatographic systems.
    Robinson J; Roush D; Cramer SM
    J Chromatogr A; 2020 Apr; 1617():460838. PubMed ID: 31932086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic workflow for studying domain contributions of bispecific antibodies to selectivity in multimodal chromatography.
    Parasnavis SS; Niu B; Aspelund M; Chung WK; Snyder M; Cramer SM
    Biotechnol Bioeng; 2022 Jan; 119(1):211-225. PubMed ID: 34687215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of protein selectivity in multimodal chromatography using in silico designed Fab fragment variants.
    Karkov HS; Krogh BO; Woo J; Parimal S; Ahmadian H; Cramer SM
    Biotechnol Bioeng; 2015 Nov; 112(11):2305-15. PubMed ID: 25950863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity.
    Arora J; Hu Y; Esfandiary R; Sathish HA; Bishop SM; Joshi SB; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2016; 8(8):1561-1574. PubMed ID: 27560842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR models for prediction of chromatographic behavior of homologous Fab variants.
    Robinson JR; Karkov HS; Woo JA; Krogh BO; Cramer SM
    Biotechnol Bioeng; 2017 Jun; 114(6):1231-1240. PubMed ID: 27943241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of populations of antibody variants by fine tuning of hydrophobic-interaction chromatography operating conditions.
    Valliere-Douglass J; Wallace A; Balland A
    J Chromatogr A; 2008 Dec; 1214(1-2):81-9. PubMed ID: 19012891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Native Reversible Self-Association of a Monoclonal Antibody Mediated by Fab-Fab Interaction.
    Gentiluomo L; Roessner D; Streicher W; Mahapatra S; Harris P; Frieß W
    J Pharm Sci; 2020 Jan; 109(1):443-451. PubMed ID: 31563513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of polyelectrolyte-driven Fab fragment separation.
    Capito F; Kolmar H; Edelmann B; Skudas R
    Biotechnol J; 2014 May; 9(5):698-701. PubMed ID: 24659538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.
    Karkov HS; Woo J; Krogh BO; Ahmadian H; Cramer SM
    J Chromatogr A; 2015 Dec; 1426():102-9. PubMed ID: 26654254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Polysorbate 20 and Polysorbate 80 on the Higher-Order Structure of a Monoclonal Antibody and Its Fab and Fc Fragments Probed Using 2D Nuclear Magnetic Resonance Spectroscopy.
    Singh SM; Bandi S; Jones DNM; Mallela KMG
    J Pharm Sci; 2017 Dec; 106(12):3486-3498. PubMed ID: 28843351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process.
    Chen J; Tetrault J; Ley A
    J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.
    Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ
    MAbs; 2015; 7(1):212-30. PubMed ID: 25559441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring preferred binding domains of IgG1 mAbs to multimodal adsorbents using a combined biophysics and simulation approach.
    Dhingra K; Sinha I; Snyder M; Roush D; Cramer SM
    Biotechnol Prog; 2024; 40(2):e3415. PubMed ID: 38043031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation of monoclonal antibodies in ion-exchange chromatography: A predictive quantitative structure-activity relationship modeling approach.
    Kittelmann J; Lang KMH; Ottens M; Hubbuch J
    J Chromatogr A; 2017 Aug; 1510():33-39. PubMed ID: 28655394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The three-dimensional structure of an intact monoclonal antibody for canine lymphoma.
    Harris LJ; Larson SB; Hasel KW; Day J; Greenwood A; McPherson A
    Nature; 1992 Nov; 360(6402):369-72. PubMed ID: 1448155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of mAbs molecular variants by analytical hydrophobic interaction chromatography HPLC: overview and applications.
    Haverick M; Mengisen S; Shameem M; Ambrogelly A
    MAbs; 2014; 6(4):852-8. PubMed ID: 24751784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal Chromatography for Purification of Biotherapeutics - A Review.
    Halan V; Maity S; Bhambure R; Rathore AS
    Curr Protein Pept Sci; 2019; 20(1):4-13. PubMed ID: 29065828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.
    Kirley TL; Norman AB
    Hum Vaccin Immunother; 2015; 11(2):458-67. PubMed ID: 25692880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights in understanding aggregate formation and dissociation in cation exchange chromatography for a structurally unstable Fc-fusion protein.
    Chen Z; Huang C; Chennamsetty N; Xu X; Li ZJ
    J Chromatogr A; 2016 Aug; 1460():110-22. PubMed ID: 27452990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.