These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29880791)
1. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources. Yoon SJ; Lee J; Han S; Kim CK; Ahn CW; Kim MK; Lee YH Nat Commun; 2018 Jun; 9(1):2218. PubMed ID: 29880791 [TBL] [Abstract][Full Text] [Related]
2. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot. Jiang Q; Roy P; Claude JB; Wenger J Nano Lett; 2021 Aug; 21(16):7030-7036. PubMed ID: 34398613 [TBL] [Abstract][Full Text] [Related]
7. Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength. Metzger B; Gui L; Fuchs J; Floess D; Hentschel M; Giessen H Nano Lett; 2015 Jun; 15(6):3917-22. PubMed ID: 25867489 [TBL] [Abstract][Full Text] [Related]
8. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping. Kotsifaki DG; Truong VG; Chormaic SN Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440 [TBL] [Abstract][Full Text] [Related]
9. Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna. Rakhlin M; Klimko G; Sorokin S; Kulagina M; Zadiranov Y; Kazanov D; Shubina T; Ivanov S; Toropov A Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564271 [TBL] [Abstract][Full Text] [Related]
10. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566 [TBL] [Abstract][Full Text] [Related]
11. Towards Spatio-Temporal Control in Optical Trapping. Roy D; De AK; Goswami D Proc SPIE Int Soc Opt Eng; 2009 Aug; 7400():. PubMed ID: 23814446 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence advantages with microscopic spatiotemporal control. Goswami D; Roy D; De AK Proc SPIE Int Soc Opt Eng; 2010 Feb; 7569():. PubMed ID: 23814447 [TBL] [Abstract][Full Text] [Related]
14. Squeezing Photons into a Point-Like Space. Kim MK; Sim H; Yoon SJ; Gong SH; Ahn CW; Cho YH; Lee YH Nano Lett; 2015 Jun; 15(6):4102-7. PubMed ID: 26010266 [TBL] [Abstract][Full Text] [Related]
15. Detecting the trapping of small metal nanoparticles in the gap of nanoantennas with optical second harmonic generation. Butet J; Lovera A; Martin OJ Opt Express; 2013 Nov; 21(23):28710-8. PubMed ID: 24514383 [TBL] [Abstract][Full Text] [Related]
16. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Celebrano M; Wu X; Baselli M; Großmann S; Biagioni P; Locatelli A; De Angelis C; Cerullo G; Osellame R; Hecht B; Duò L; Ciccacci F; Finazzi M Nat Nanotechnol; 2015 May; 10(5):412-7. PubMed ID: 25895003 [TBL] [Abstract][Full Text] [Related]
17. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Linnenbank H; Grynko Y; Förstner J; Linden S Light Sci Appl; 2016 Jan; 5(1):e16013. PubMed ID: 30167115 [TBL] [Abstract][Full Text] [Related]
18. Longitudinal position dependence of the second-harmonic generation of optically trapped silica microspheres. Sanchez L; Bruyère A; Bonhomme O; Benichou E; Brevet PF Opt Lett; 2020 Jun; 45(12):3196-3199. PubMed ID: 32538941 [TBL] [Abstract][Full Text] [Related]