These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29881115)

  • 1. An Improved Strategy for Bayesian Estimation of the Reduced Reparameterized Unified Model.
    Culpepper SA; Hudson A
    Appl Psychol Meas; 2018 Mar; 42(2):99-115. PubMed ID: 29881115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter Logistic Model.
    Zhang J; Lu J; Du H; Zhang Z
    Front Psychol; 2020; 11():2121. PubMed ID: 33041882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the DINA model parameters using the No-U-Turn Sampler.
    da Silva MA; de Oliveira ESB; von Davier AA; Bazán JL
    Biom J; 2018 Mar; 60(2):352-368. PubMed ID: 29194715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data.
    Saraiva EF; Suzuki AK; Milan LA
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel and Highly Effective Bayesian Sampling Algorithm Based on the Auxiliary Variables to Estimate the Testlet Effect Models.
    Lu J; Zhang J; Zhang Z; Xu B; Tao J
    Front Psychol; 2021; 12():509575. PubMed ID: 34456774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating CDMs Using the Slice-Within-Gibbs Sampler.
    Xu X; de la Torre J; Zhang J; Guo J; Shi N
    Front Psychol; 2020; 11():2260. PubMed ID: 33101108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in Systems Biology.
    Gupta S; Hainsworth L; Hogg JS; Lee REC; Faeder JR
    Proc Euromicro Int Conf Parallel Distrib Netw Based Process; 2018 Mar; 2018():690-697. PubMed ID: 30175326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data.
    Liang F; Kim J; Song Q
    Technometrics; 2016; 58(3):604-318. PubMed ID: 29033469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Semiparametric Bayesian Approach to Heterogeneous Spatial Autoregressive Models.
    Liu T; Xu D; Ke S
    Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme.
    Fu Z; Zhang S; Su YH; Shi N; Tao J
    Br J Math Stat Psychol; 2021 Nov; 74(3):427-464. PubMed ID: 34002857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on mapping quantitative trait loci for animal complex binary traits using Bayesian-Markov chain Monte Carlo approach.
    Liu J; Zhang Y; Zhang Q; Wang L; Zhang J
    Sci China C Life Sci; 2006 Dec; 49(6):552-9. PubMed ID: 17312993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous estimation of population receptive field and hemodynamic parameters from single point BOLD responses using Metropolis-Hastings sampling.
    Adaszewski S; Slater D; Melie-Garcia L; Draganski B; Bogorodzki P
    Neuroimage; 2018 May; 172():175-193. PubMed ID: 29414493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension.
    Marnissi Y; Chouzenoux E; Benazza-Benyahia A; Pesquet JC
    Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An MCMC computational approach for a continuous time state-dependent regime switching diffusion process.
    Hibbah EH; El Maroufy H; Fuchs C; Ziad T
    J Appl Stat; 2020; 47(8):1354-1374. PubMed ID: 35706700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison of Estimation Methods for a Multi-unidimensional Graded Response IRT Model.
    Kuo TC; Sheng Y
    Front Psychol; 2016; 7():880. PubMed ID: 27375545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A General Three-Parameter Logistic Model With Time Effect.
    Zhang Z; Zhang J; Tao J; Shi N
    Front Psychol; 2020; 11():1791. PubMed ID: 32849057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Gibbs Sampler for Learning DAGs.
    Goudie RJ; Mukherjee S
    J Mach Learn Res; 2016 Apr; 17(30):1-39. PubMed ID: 28331463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of alternative MCMC strategies illustrated using the reaction norm model.
    Shariati M; Sorensen D
    J Anim Breed Genet; 2008 Jun; 125(3):176-86. PubMed ID: 18479268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Metropolis Monte Carlo implementation of bayesian time-domain parameter estimation: application to coupling constant estimation from antiphase multiplets.
    Andrec M; Prestegard JH
    J Magn Reson; 1998 Feb; 130(2):217-32. PubMed ID: 9500892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.