BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29881661)

  • 1. Engineering fungal morphology for enhanced production of hydrolytic enzymes by
    Singh B
    3 Biotech; 2018 Jun; 8(6):283. PubMed ID: 29881661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.
    Coban HB; Demirci A; Turhan I
    Bioprocess Biosyst Eng; 2015 Jun; 38(6):1075-80. PubMed ID: 25555703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles.
    Coban HB; Demirci A; Turhan I
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1431-6. PubMed ID: 25732541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free and immobilized Aspergillus oryzae SBS50 producing protease-resistant and thermostable phytase.
    Sapna ; Singh B
    3 Biotech; 2017 Jul; 7(3):213. PubMed ID: 28669072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected].
    Sapna ; Singh B
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition of aluminum oxide microparticles to
    Dong M; Wang S; Xu F; Li Q; Li W
    Eng Life Sci; 2018 Jun; 18(6):353-358. PubMed ID: 32624915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of a protease-resistant phytase of Aspergillus oryzae SBS50 whose properties make it exceptionally useful as a feed supplement.
    Sapna ; Singh B
    Int J Biol Macromol; 2017 Oct; 103():458-466. PubMed ID: 28527994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.
    Yatmaz E; Karahalil E; Germec M; Ilgin M; Turhan İ
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1391-9. PubMed ID: 27129457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles.
    Driouch H; Hänsch R; Wucherpfennig T; Krull R; Wittmann C
    Biotechnol Bioeng; 2012 Feb; 109(2):462-71. PubMed ID: 21887774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microparticle-enhanced polygalacturonase production by wild type
    Karahalil E; Demirel F; Evcan E; Germeç M; Tari C; Turhan I
    3 Biotech; 2017 Dec; 7(6):361. PubMed ID: 28979834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology engineering of Aspergillus oryzae for l-malate production.
    Chen X; Zhou J; Ding Q; Luo Q; Liu L
    Biotechnol Bioeng; 2019 Oct; 116(10):2662-2673. PubMed ID: 31180134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile.
    Bala A; Singh B
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):181-91. PubMed ID: 26581490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production.
    Driouch H; Roth A; Dersch P; Wittmann C
    Bioeng Bugs; 2011; 2(2):100-4. PubMed ID: 21636997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.
    Liu J; Li J; Shin HD; Du G; Chen J; Liu L
    J Biotechnol; 2017 Nov; 262():40-46. PubMed ID: 28965975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: Comparative and quantitative insights into microparticle-enhanced cultivation (MPEC).
    Kowalska A; Boruta T; Bizukojć M
    Microbiologyopen; 2018 Oct; 7(5):e00603. PubMed ID: 29504287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology engineering of Aspergillus niger for improved enzyme production.
    Driouch H; Sommer B; Wittmann C
    Biotechnol Bioeng; 2010 Apr; 105(6):1058-68. PubMed ID: 19953678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation.
    Arana-Cuenca A; Tovar-Jiménez X; Favela-Torres E; Perraud-Gaime I; González-Becerra AE; Martínez A; Moss-Acosta CL; Mercado-Flores Y; Téllez-Jurado A
    3 Biotech; 2019 Jan; 9(1):21. PubMed ID: 30622859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of microparticles on echinocandin B production by Aspergillus nidulans].
    Niu K; Hu Y; Mao J; Zou S; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1082-8. PubMed ID: 26647583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making.
    Bala A; Singh B
    World J Microbiol Biotechnol; 2017 Jun; 33(6):109. PubMed ID: 28466305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.