These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29881836)

  • 21. Designer polymer-based microcapsules made using microfluidics.
    Chen PW; Erb RM; Studart AR
    Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.
    Ye C; Chen A; Colombo P; Martinez C
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S461-73. PubMed ID: 20484226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics.
    Deng NN; Wang W; Ju XJ; Xie R; Weitz DA; Chu LY
    Lab Chip; 2013 Oct; 13(20):4047-52. PubMed ID: 23948718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials.
    Ribeiro de Souza L; Al-Tabbaa A
    Lab Chip; 2021 Nov; 21(23):4652-4659. PubMed ID: 34734612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailored Double Emulsions Made Simple.
    Wang J; Hahn S; Amstad E; Vogel N
    Adv Mater; 2022 Feb; 34(5):e2107338. PubMed ID: 34706112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monodisperse double emulsions generated from a microcapillary device.
    Utada AS; Lorenceau E; Link DR; Kaplan PD; Stone HA; Weitz DA
    Science; 2005 Apr; 308(5721):537-41. PubMed ID: 15845850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simplified, Shear Induced Generation of Double Emulsions for Robust Compartmentalization during Single Genome Analysis.
    Cowell TW; Dobria A; Han HS
    ACS Appl Mater Interfaces; 2022 May; 14(18):20528-20537. PubMed ID: 35502700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability.
    do Nascimento DF; Arriaga LR; Eggersdorfer M; Ziblat R; Marques Mde F; Reynaud F; Koehler SA; Weitz DA
    Langmuir; 2016 May; 32(21):5350-5. PubMed ID: 27192611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.
    Kim SH; Jeon SJ; Yang SM
    J Am Chem Soc; 2008 May; 130(18):6040-6. PubMed ID: 18393502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spray-Assisted Formation of Micrometer-Sized Emulsions.
    Steinacher M; Amstad E
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13952-13961. PubMed ID: 35258934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous and scalable polymer capsule processing for inertial fusion energy target shell fabrication using droplet microfluidics.
    Li J; Lindley-Start J; Porch A; Barrow D
    Sci Rep; 2017 Jul; 7(1):6302. PubMed ID: 28740153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of novel silicone capsules with tunable mechanical properties by microfluidic techniques.
    Vilanova N; Rodríguez-Abreu C; Fernández-Nieves A; Solans C
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5247-52. PubMed ID: 23659612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells.
    Chen R; Dong PF; Xu JH; Wang YD; Luo GS
    Lab Chip; 2012 Oct; 12(20):3858-60. PubMed ID: 22733304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional polymeric microparticles engineered from controllable microfluidic emulsions.
    Wang W; Zhang MJ; Chu LY
    Acc Chem Res; 2014 Feb; 47(2):373-84. PubMed ID: 24199893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Throughput Fabrication of Size-Controlled Pickering Emulsions, Colloidosomes, and Air-Coated Particles via Clog-Free Jetting of Suspensions.
    Jiang J; Poortinga AT; Liao Y; Kamperman T; Venner CH; Visser CW
    Adv Mater; 2023 Mar; 35(13):e2208894. PubMed ID: 36626724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling the stability and size of double-emulsion-templated poly(lactic-co-glycolic) acid microcapsules.
    Tu F; Lee D
    Langmuir; 2012 Jul; 28(26):9944-52. PubMed ID: 22667691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled Generation of Ultrathin-Shell Double Emulsions and Studies on Their Stability.
    Zhao CX; Chen D; Hui Y; Weitz DA; Middelberg APJ
    Chemphyschem; 2017 May; 18(10):1393-1399. PubMed ID: 28111852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid-Stabilized Double Emulsions Generated in Planar Microfluidic Devices.
    Kong L; Levin A; Toprakcioglu Z; Xu Y; Gang H; Ye R; Mu BZ; Knowles TPJ
    Langmuir; 2020 Mar; 36(9):2349-2356. PubMed ID: 32045250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.
    Arriaga LR; Datta SS; Kim SH; Amstad E; Kodger TE; Monroy F; Weitz DA
    Small; 2014 Mar; 10(5):950-6. PubMed ID: 24150883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.