These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 29881843)
1. Size dependent surface charge properties of silica nano-channels: double layer overlap and inlet/outlet effects. Sen T; Barisik M Phys Chem Chem Phys; 2018 Jun; 20(24):16719-16728. PubMed ID: 29881843 [TBL] [Abstract][Full Text] [Related]
2. Electric charge of nanopatterned silica surfaces. Ozcelik HG; Barisik M Phys Chem Chem Phys; 2019 Apr; 21(14):7576-7587. PubMed ID: 30900715 [TBL] [Abstract][Full Text] [Related]
3. Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium. Baldessari F; Santiago JG J Colloid Interface Sci; 2008 Sep; 325(2):526-38. PubMed ID: 18639883 [TBL] [Abstract][Full Text] [Related]
4. pH-regulated ionic conductance in a nanochannel with overlapped electric double layers. Ma Y; Yeh LH; Lin CY; Mei L; Qian S Anal Chem; 2015 Apr; 87(8):4508-14. PubMed ID: 25803424 [TBL] [Abstract][Full Text] [Related]
5. Internal surface electric charge characterization of mesoporous silica. Sen T; Barisik M Sci Rep; 2019 Jan; 9(1):137. PubMed ID: 30644430 [TBL] [Abstract][Full Text] [Related]
6. Transport properties of long straight nano-channels in electrolyte solutions: a systematic approach. Yaroshchuk AE Adv Colloid Interface Sci; 2011 Oct; 168(1-2):278-91. PubMed ID: 21496786 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo simulation of electrical double-layer formation from mixtures of electrolytes inside nanopores. Hou CH; Taboada-Serrano P; Yiacoumi S; Tsouris C J Chem Phys; 2008 Jan; 128(4):044705. PubMed ID: 18247979 [TBL] [Abstract][Full Text] [Related]
8. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer. McNamee CE Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437 [TBL] [Abstract][Full Text] [Related]
9. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes. Feng G; Huang J; Sumpter BG; Meunier V; Qiao R Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamics of Charge Regulation during Ion Transport through Silica Nanochannels. Ritt CL; de Souza JP; Barsukov MG; Yosinski S; Bazant MZ; Reed MA; Elimelech M ACS Nano; 2022 Sep; 16(9):15249-15260. PubMed ID: 36075111 [TBL] [Abstract][Full Text] [Related]
11. Electroviscous effect on fluid drag in a microchannel with large zeta potential. Jing D; Bhushan B Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512 [TBL] [Abstract][Full Text] [Related]
12. Electrokinetics in nanochannels: part II. Mobility dependence on ion density and ionic current measurements. Baldessari F; Santiago JG J Colloid Interface Sci; 2008 Sep; 325(2):539-46. PubMed ID: 18639884 [TBL] [Abstract][Full Text] [Related]
13. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles. Jing D; Li D; Pan Y; Bhushan B Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966 [TBL] [Abstract][Full Text] [Related]
14. The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Feng G; Qiao R; Huang J; Dai S; Sumpter BG; Meunier V Phys Chem Chem Phys; 2011 Jan; 13(3):1152-61. PubMed ID: 21079823 [TBL] [Abstract][Full Text] [Related]
15. Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds. Nischang I; Chen G; Tallarek U J Chromatogr A; 2006 Mar; 1109(1):32-50. PubMed ID: 16386749 [TBL] [Abstract][Full Text] [Related]
16. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review. Jing D; Bhushan B J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432 [TBL] [Abstract][Full Text] [Related]