These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29881849)

  • 1. The reactivity of water and OH on Pt-Ni(111) films.
    McBride F; Hodgson A
    Phys Chem Chem Phys; 2018 Jun; 20(24):16743-16748. PubMed ID: 29881849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.
    Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL
    J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Electronic Stabilization of PtNi Concave Octahedral Nanoparticles by P Doping for Oxygen Reduction Reaction in Alkaline Electrolytes.
    Wang S; Xiong L; Bi J; Zhang X; Yang G; Yang S
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27009-27018. PubMed ID: 30040371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction.
    Jung WS
    J Colloid Interface Sci; 2018 Mar; 514():30-39. PubMed ID: 29232598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Pt NiNC-Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts-In Situ Tracking of the Atomic Alloying Process.
    Feng Q; Wang X; Klingenhof M; Heggen M; Strasser P
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202203728. PubMed ID: 35802306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction.
    Kumeda T; Otsuka N; Tajiri H; Sakata O; Hoshi N; Nakamura M
    ACS Omega; 2017 May; 2(5):1858-1863. PubMed ID: 31457547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Ni in PtNi Bimetallic Electrocatalysts for Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation.
    Luo H; Yukuhiro VY; Fernández PS; Feng J; Thompson P; Rao RR; Cai R; Favero S; Haigh SJ; Durrant JR; Stephens IEL; Titirici MM
    ACS Catal; 2022 Dec; 12(23):14492-14506. PubMed ID: 36504912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable Exposure of Pt Active Facets for Efficient Oxygen Reduction.
    Wang G; Yang Z; Du Y; Yang Y
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15848-15854. PubMed ID: 31476100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a ReaxFF Reactive Force Field for the Pt-Ni Alloy Catalyst.
    Shin YK; Gai L; Raman S; van Duin ACT
    J Phys Chem A; 2016 Oct; 120(41):8044-8055. PubMed ID: 27670674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Indexed PtNi Alloy Skin Spiraled on Pd Nanowires for Highly Efficient Oxygen Reduction Reaction Catalysis.
    Zhao Y; Tao L; Dang W; Wang L; Xia M; Wang B; Liu M; Gao F; Zhang J; Zhao Y
    Small; 2019 Apr; 15(17):e1900288. PubMed ID: 30920760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?
    Escaño MC; Gyenge E; Nakanishi H; Kasai H
    J Nanosci Nanotechnol; 2011 Apr; 11(4):2944-51. PubMed ID: 21776658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first-principle calculation of sulfur oxidation on metallic Ni(111) and Pt(111), and bimetallic Ni@Pt(111) and Pt@Ni(111) surfaces.
    Yeh CH; Ho JJ
    Chemphyschem; 2012 Sep; 13(13):3194-203. PubMed ID: 22740096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and dissociation of H2O2 on Pt and Pt-alloy clusters and surfaces.
    Balbuena PB; Calvo SR; Lamas EJ; Salazar PF; Seminario JM
    J Phys Chem B; 2006 Sep; 110(35):17452-9. PubMed ID: 16942084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose.
    Liang G; He L; Arai M; Zhao F
    ChemSusChem; 2014 May; 7(5):1415-21. PubMed ID: 24664493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring Zirconia Supported Intermetallic Platinum Alloy via Reactive Metal-Support Interactions for High-Performing Fuel Cells.
    Lin Z; Sathishkumar N; Xia Y; Li S; Liu X; Mao J; Shi H; Lu G; Wang T; Wang HL; Huang Y; Elbaz L; Li Q
    Angew Chem Int Ed Engl; 2024 Jun; 63(26):e202400751. PubMed ID: 38634352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni/Pt(111) bimetallic surfaces: unique chemistry at monolayer ni coverage.
    Hwu HH; Eng J; Chen JG
    J Am Chem Soc; 2002 Jan; 124(4):702-9. PubMed ID: 11804501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment.
    Menning CA; Hwu HH; Chen JG
    J Phys Chem B; 2006 Aug; 110(31):15471-7. PubMed ID: 16884269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Insights into the Hydrogen Oxidation Reaction on PtNi Alloys in Alkaline Media: A First-Principles Investigation.
    Zhao L; Liu H; Liu Y; Han X; Xu J; Xing W; Guo W
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40248-40260. PubMed ID: 32808752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Insight of the Critical Role of Ni in Pt-Based Nanocatalysts for Improving the Oxygen Reduction Reaction Probed Using an
    Ze H; Chen X; Wang XT; Wang YH; Chen QQ; Lin JS; Zhang YJ; Zhang XG; Tian ZQ; Li JF
    J Am Chem Soc; 2021 Jan; 143(3):1318-1322. PubMed ID: 33449677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical study of reactivity trends for methanol on Co/Pt(111) and Ni/Pt(111) bimetallic surfaces.
    Skoplyak O; Menning CA; Barteau MA; Chen JG
    J Chem Phys; 2007 Sep; 127(11):114707. PubMed ID: 17887870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.