These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 29881880)
1. Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe Baghayeri M; Ansari R; Nodehi M; Razavipanah I; Veisi H Mikrochim Acta; 2018 Jun; 185(7):320. PubMed ID: 29881880 [TBL] [Abstract][Full Text] [Related]
2. Voltammetric aptasensor for bisphenol A based on double signal amplification via gold-coated multiwalled carbon nanotubes and an ssDNA-dye complex. Li H; Ding S; Wang W; Lv Q; Wang Z; Bai H; Zhang Q Mikrochim Acta; 2019 Nov; 186(12):860. PubMed ID: 31786663 [TBL] [Abstract][Full Text] [Related]
3. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Beiranvand ZS; Abbasi AR; Dehdashtian S; Karimi Z; Azadbakht A Anal Biochem; 2017 Feb; 518():35-45. PubMed ID: 27789234 [TBL] [Abstract][Full Text] [Related]
4. A novel SWCNT-amplified "signal-on" electrochemical aptasensor for the determination of trace level of bisphenol A in human serum and lake water. Zhao Z; Zheng J; Nguyen EP; Tao D; Cheng J; Pan H; Zhang L; Jaffrezic-Renault N; Guo Z Mikrochim Acta; 2020 Aug; 187(9):500. PubMed ID: 32803374 [TBL] [Abstract][Full Text] [Related]
5. A layered nanocomposite of laccase, chitosan, and Fe Fernandes PMV; Campiña JM; Silva AF Mikrochim Acta; 2020 Apr; 187(5):262. PubMed ID: 32270383 [TBL] [Abstract][Full Text] [Related]
6. A novel aptasensing method for detecting bisphenol A using the catalytic effect of the Fe Farahbakhsh F; Heydari-Bafrooei E; Ahmadi M; Hoda Hekmatara S; Sabet M Food Chem; 2021 Sep; 355():129666. PubMed ID: 33799256 [TBL] [Abstract][Full Text] [Related]
7. Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Zhu Y; Zhou C; Yan X; Yan Y; Wang Q Anal Chim Acta; 2015 Jul; 883():81-9. PubMed ID: 26088780 [TBL] [Abstract][Full Text] [Related]
8. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Goulart LA; Gonçalves R; Correa AA; Pereira EC; Mascaro LH Mikrochim Acta; 2017 Dec; 185(1):12. PubMed ID: 29594601 [TBL] [Abstract][Full Text] [Related]
9. Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots. Rezaei B; Jamei HR; Ensafi AA Mikrochim Acta; 2018 Feb; 185(3):180. PubMed ID: 29594452 [TBL] [Abstract][Full Text] [Related]
10. A novel impedimetric aptasensor, based on functionalized carbon nanotubes and prussian blue as labels. Azadbakht A; Roushani M; Abbasi AR; Derikvand Z Anal Biochem; 2016 Nov; 512():58-69. PubMed ID: 27515992 [TBL] [Abstract][Full Text] [Related]
11. Design of ultrasensitive bisphenol A-aptamer based on platinum nanoparticles loading to polyethyleneimine-functionalized carbon nanotubes. Derikvandi Z; Abbasi AR; Roushani M; Derikvand Z; Azadbakht A Anal Biochem; 2016 Nov; 512():47-57. PubMed ID: 27307183 [TBL] [Abstract][Full Text] [Related]
12. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Zhou L; Wang J; Li D; Li Y Food Chem; 2014 Nov; 162():34-40. PubMed ID: 24874354 [TBL] [Abstract][Full Text] [Related]
13. Aptamer based ratiometric electrochemical sensing of 17β-estradiol using an electrode modified with gold nanoparticles, thionine, and multiwalled carbon nanotubes. Liu X; Deng K; Wang H; Li C; Zhang S; Huang H Mikrochim Acta; 2019 May; 186(6):347. PubMed ID: 31079210 [TBL] [Abstract][Full Text] [Related]
14. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Yazdanparast S; Benvidi A; Banaei M; Nikukar H; Tezerjani MD; Azimzadeh M Mikrochim Acta; 2018 Aug; 185(9):405. PubMed ID: 30094655 [TBL] [Abstract][Full Text] [Related]
15. A novel and label-free immunosensor for bisphenol A using rutin as the redox probe. Huang Y; Li X; Zheng S Talanta; 2016 Nov; 160():241-246. PubMed ID: 27591610 [TBL] [Abstract][Full Text] [Related]
16. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin. Heydari-Bafrooei E; Amini M; Ardakani MH Biosens Bioelectron; 2016 Nov; 85():828-836. PubMed ID: 27295570 [TBL] [Abstract][Full Text] [Related]
17. Voltammetric immunoassay for Mycobacterium tuberculosis secretory protein MPT64 based on a synergistic amplification strategy using rolling circle amplification and a gold electrode modified with graphene oxide, Fe Gou D; Xie G; Li Y; Zhang X; Chen H Mikrochim Acta; 2018 Aug; 185(9):436. PubMed ID: 30167897 [TBL] [Abstract][Full Text] [Related]
18. A sensitive electrochemical sensor for bisphenol A on the basis of the AuPd incorporated carboxylic multi-walled carbon nanotubes. Mo F; Xie J; Wu T; Liu M; Zhang Y; Yao S Food Chem; 2019 Sep; 292():253-259. PubMed ID: 31054673 [TBL] [Abstract][Full Text] [Related]
19. Aptamer-linked biosensor for thrombin based on AuNPs/thionine-graphene nanocomposite. Zhang Z; Luo L; Zhu L; Ding Y; Deng D; Wang Z Analyst; 2013 Sep; 138(18):5365-70. PubMed ID: 23877321 [TBL] [Abstract][Full Text] [Related]
20. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Sun X; Li F; Shen G; Huang J; Wang X Analyst; 2014 Jan; 139(1):299-308. PubMed ID: 24256770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]