These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transforming malaria prevention and control: the prospects and challenges of gene drive technology for mosquito management. Tajudeen YA; Oladipo HJ; Oladunjoye IO; Oladipo MK; Shittu HD; Abdulmumeen IF; Afolabi AO; El-Sherbini MS Ann Med; 2023; 55(2):2302504. PubMed ID: 38232762 [No Abstract] [Full Text] [Related]
3. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Connolly JB; Mumford JD; Fuchs S; Turner G; Beech C; North AR; Burt A Malar J; 2021 Mar; 20(1):170. PubMed ID: 33781254 [TBL] [Abstract][Full Text] [Related]
4. Public health concerns over gene-drive mosquitoes: will future use of gene-drive snails for schistosomiasis control gain increased level of community acceptance? Famakinde DO Pathog Glob Health; 2020 Mar; 114(2):55-63. PubMed ID: 32100643 [TBL] [Abstract][Full Text] [Related]
5. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. North AR; Burt A; Godfray HCJ BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000 [TBL] [Abstract][Full Text] [Related]
6. Problem formulation for gene drive mosquitoes designed to reduce malaria transmission in Africa: results from four regional consultations 2016-2018. Teem JL; Ambali A; Glover B; Ouedraogo J; Makinde D; Roberts A Malar J; 2019 Oct; 18(1):347. PubMed ID: 31615576 [TBL] [Abstract][Full Text] [Related]
7. Toward the Definition of Efficacy and Safety Criteria for Advancing Gene Drive-Modified Mosquitoes to Field Testing. James SL; Marshall JM; Christophides GK; Okumu FO; Nolan T Vector Borne Zoonotic Dis; 2020 Apr; 20(4):237-251. PubMed ID: 32155390 [TBL] [Abstract][Full Text] [Related]
8. Control of malaria-transmitting mosquitoes using gene drives. Nolan T Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190803. PubMed ID: 33357060 [TBL] [Abstract][Full Text] [Related]
9. An Ethical Overview of the CRISPR-Based Elimination of Anopheles gambiae to Combat Malaria. Wise IJ; Borry P J Bioeth Inq; 2022 Sep; 19(3):371-380. PubMed ID: 35175513 [TBL] [Abstract][Full Text] [Related]
10. Ugandan stakeholder hopes and concerns about gene drive mosquitoes for malaria control: new directions for gene drive risk governance. Hartley S; Smith RDJ; Kokotovich A; Opesen C; Habtewold T; Ledingham K; Raymond B; Rwabukwali CB Malar J; 2021 Mar; 20(1):149. PubMed ID: 33726763 [TBL] [Abstract][Full Text] [Related]
11. Perspectives of African stakeholders on gene drives for malaria control and elimination: a multi-country survey. Finda MF; Juma EO; Kahamba NF; Mthawanji RS; Sambo M; Emidi B; Wiener S; O'Brochta D; Santos M; James S; Okumu FO Malar J; 2023 Dec; 22(1):384. PubMed ID: 38129897 [TBL] [Abstract][Full Text] [Related]
12. Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study. Leung S; Windbichler N; Wenger EA; Bever CA; Selvaraj P Malar J; 2022 Jul; 21(1):226. PubMed ID: 35883100 [TBL] [Abstract][Full Text] [Related]
13. Considerations for first field trials of low-threshold gene drive for malaria vector control. Connolly JB; Burt A; Christophides G; Diabate A; Habtewold T; Hancock PA; James AA; Kayondo JK; Lwetoijera DW; Manjurano A; McKemey AR; Santos MR; Windbichler N; Randazzo F Malar J; 2024 May; 23(1):156. PubMed ID: 38773487 [TBL] [Abstract][Full Text] [Related]
14. Operationalizing stakeholder engagement for gene drive research in malaria elimination in Africa-translating guidance into practice. Pare Toe L; Dicko B; Linga R; Barry N; Drabo M; Sykes N; Thizy D Malar J; 2022 Jul; 21(1):225. PubMed ID: 35870909 [TBL] [Abstract][Full Text] [Related]
15. Small-scale release of non-gene drive mosquitoes in Burkina Faso: from engagement implementation to assessment, a learning journey. Pare Toe L; Barry N; Ky AD; Kekele S; Meda W; Bayala K; Drabo M; Thizy D; Diabate A Malar J; 2021 Oct; 20(1):395. PubMed ID: 34627240 [TBL] [Abstract][Full Text] [Related]
16. Making gene drive biodegradable. Zapletal J; Najmitabrizi N; Erraguntla M; Lawley MA; Myles KM; Adelman ZN Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190804. PubMed ID: 33357058 [TBL] [Abstract][Full Text] [Related]
17. Population modification of Anopheline species to control malaria transmission. Carballar-LejarazĂș R; James AA Pathog Glob Health; 2017 Dec; 111(8):424-435. PubMed ID: 29385893 [TBL] [Abstract][Full Text] [Related]
18. How genetically modified mosquitoes could eradicate malaria. Jones S Nature; 2023 Jun; 618(7967):S29-S31. PubMed ID: 37380677 [No Abstract] [Full Text] [Related]
19. Gene-drive mosquitoes: a prospect for future malaria control. Monawwer SA; Alzubaidi AOI; Yasmin F; Haimour SMQ; Shah SMI; Ullah I Pan Afr Med J; 2022; 41():109. PubMed ID: 35432707 [TBL] [Abstract][Full Text] [Related]
20. Symbionts and gene drive: two strategies to combat vector-borne disease. Wang GH; Du J; Chu CY; Madhav M; Hughes GL; Champer J Trends Genet; 2022 Jul; 38(7):708-723. PubMed ID: 35314082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]