These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29882513)

  • 1. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
    Rao C; Liu H
    Bioinspir Biomim; 2018 Jul; 13(5):056002. PubMed ID: 29882513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.
    Rao C; Ikeda T; Nakata T; Liu H
    Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Reynolds Number and Distribution on Passive Flow Control in Owl-Inspired Leading-Edge Serrations.
    Rao C; Liu H
    Integr Comp Biol; 2020 Nov; 60(5):1135-1146. PubMed ID: 32805051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aeroacoustic characteristics of owl-inspired blade designs in a mixed flow fan: effects of leading- and trailing-edge serrations.
    Wang J; Ishibashi K; Joto M; Ikeda T; Fujii T; Nakata T; Liu H
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34243175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls.
    Li D; Liu X; Hu F; Wang L
    Bioinspir Biomim; 2019 Dec; 15(1):016009. PubMed ID: 31665715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trailing-edge fringes enable robust aerodynamic force production and noise suppression in an owl wing model.
    Rong J; Jiang Y; Murayama Y; Ishibashi R; Murakami M; Liu H
    Bioinspir Biomim; 2023 Nov; 19(1):. PubMed ID: 37939389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of leading-edge serrations in controlling the flow over owls' wing.
    Saussaman T; Nafi A; Charland D; Ben-Gida H; Gurka R
    Bioinspir Biomim; 2023 Sep; 18(6):. PubMed ID: 37650253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes).
    Weger M; Wagner H
    PLoS One; 2016; 11(3):e0149236. PubMed ID: 26934104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of barn owl leading edge serrations with freestream turbulence.
    Midmer A; Brücker C; Weger M; Wagner H; Bleckmann H
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38569525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications.
    Bachmann T; Wagner H
    J Anat; 2011 Aug; 219(2):192-202. PubMed ID: 21507001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations.
    Zhao M; Cao H; Zhang M; Liao C; Zhou T
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The gust-mitigating potential of flapping wings.
    Fisher A; Ravi S; Watkins S; Watmuff J; Wang C; Liu H; Petersen P
    Bioinspir Biomim; 2016 Aug; 11(4):046010. PubMed ID: 27481211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards silent and efficient flight by combining bioinspired owl feather serrations with cicada wing geometry.
    Wei Z; Wang S; Farris S; Chennuri N; Wang N; Shinsato S; Demir K; Horii M; Gu GX
    Nat Commun; 2024 May; 15(1):4337. PubMed ID: 38773081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A contralateral wing stabilizes a hovering hawkmoth under a lateral gust.
    Han JS; Han JH
    Sci Rep; 2019 Nov; 9(1):17397. PubMed ID: 31757991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing.
    Muthuramalingam M; Talboys E; Wagner H; Bruecker C
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33137801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shoulder viscoelasticity in a raptor-inspired model alleviates instability and enhances passive gust rejection.
    Stanton SC
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38663419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations.
    Gu M; Wu J; Zhang Y
    Bioinspir Biomim; 2020 Jul; 15(5):056001. PubMed ID: 32470950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.