These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 2988304)
1. beta-Adrenergic receptors and regulatory GTP-binding proteins: reconstitution of coupling in phospholipid vesicles. Asano T; Brandt DR; Pedersen SE; Ross EM Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985; 19():47-56. PubMed ID: 2988304 [No Abstract] [Full Text] [Related]
2. Reconstitution of catecholamine-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Asano T; Pedersen SE; Scott CW; Ross EM Biochemistry; 1984 Nov; 23(23):5460-7. PubMed ID: 6095899 [TBL] [Abstract][Full Text] [Related]
3. Catecholamine-stimulated guanosine 5'-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: kinetic analysis in reconstituted phospholipid vesicles. Asano T; Ross EM Biochemistry; 1984 Nov; 23(23):5467-71. PubMed ID: 6095900 [TBL] [Abstract][Full Text] [Related]
4. Functional activation of beta-adrenergic receptors by thiols in the presence or absence of agonists. Pedersen SE; Ross EM J Biol Chem; 1985 Nov; 260(26):14150-7. PubMed ID: 2997196 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity. Smigel M; Katada T; Northup JK; Bokoch GM; Ui M; Gilman AG Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():1-18. PubMed ID: 6328910 [No Abstract] [Full Text] [Related]
6. Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles. Asano T; Katada T; Gilman AG; Ross EM J Biol Chem; 1984 Aug; 259(15):9351-4. PubMed ID: 6146612 [TBL] [Abstract][Full Text] [Related]
7. Specificity of the functional interactions of the beta-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. Cerione RA; Staniszewski C; Benovic JL; Lefkowitz RJ; Caron MG; Gierschik P; Somers R; Spiegel AM; Codina J; Birnbaumer L J Biol Chem; 1985 Feb; 260(3):1493-500. PubMed ID: 2981858 [TBL] [Abstract][Full Text] [Related]
9. Regulation of signal transfer from beta 1-adrenoceptor to adenylate cyclase by beta gamma subunits in a reconstituted system. Hekman M; Holzhöfer A; Gierschik P; Im MJ; Jakobs KH; Pfeuffer T; Helmreich EJ Eur J Biochem; 1987 Dec; 169(2):431-9. PubMed ID: 2826145 [TBL] [Abstract][Full Text] [Related]
10. Rapid binding of guanosine 5'-O-(3-thiotriphosphate) to an apparent complex of beta-adrenergic receptor and the GTP-binding regulatory protein Gs. May DC; Ross EM Biochemistry; 1988 Jun; 27(13):4888-93. PubMed ID: 2844244 [TBL] [Abstract][Full Text] [Related]
12. Reconstitution of beta 1-adrenoceptor-dependent adenylate cyclase from purified components. Feder D; Im MJ; Klein HW; Hekman M; Holzhöfer A; Dees C; Levitzki A; Helmreich EJ; Pfeuffer T EMBO J; 1986 Jul; 5(7):1509-14. PubMed ID: 3017696 [TBL] [Abstract][Full Text] [Related]
13. Solubilization, separation, and reconstitution of brain prostaglandin E2 receptor and GTP-regulatory component. Yumoto N; Hatanaka M; Watanabe Y; Hayaishi O Adv Prostaglandin Thromboxane Leukot Res; 1987; 17A():471-3. PubMed ID: 2889339 [No Abstract] [Full Text] [Related]
14. Control of adenylate cyclase activity by G proteins. Smigel MD; Ferguson KM; Gilman AG Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985; 19():103-11. PubMed ID: 3159184 [No Abstract] [Full Text] [Related]
15. Unimpaired coupling of phosphorylated, desensitized beta-adrenoceptor to Gs in a reconstitution system. Keenan AK; Cooney D; Holzhöfer A; Dees C; Hekman M FEBS Lett; 1987 Jun; 217(2):287-91. PubMed ID: 3036583 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of specific GTP binding and hydrolysis activities in lymphocyte membrane by interleukin-2. Evans SW; Beckner SK; Farrar WL Nature; 1987 Jan 8-14; 325(7000):166-8. PubMed ID: 3100964 [TBL] [Abstract][Full Text] [Related]
17. Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Slotkin TA; Lau C; Seidler FJ Toxicol Appl Pharmacol; 1994 Dec; 129(2):223-34. PubMed ID: 7992312 [TBL] [Abstract][Full Text] [Related]
18. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit. Zeiders JL; Seidler FJ; Slotkin TA J Mol Cell Cardiol; 1997 Feb; 29(2):603-15. PubMed ID: 9140819 [TBL] [Abstract][Full Text] [Related]
19. Biochemical characterization of the adrenergic receptors: affinity labeling, purification, and reconstitution studies. Caron MG; Cerione RA; Benovic JL; Strulovici B; Staniszewski C; Lefkowitz RJ; Codina-Salada J; Birnbaumer L Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985; 19():1-12. PubMed ID: 2988293 [No Abstract] [Full Text] [Related]
20. Uncoupling of gamma-aminobutyric acid B receptors from GTP-binding proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins. Asano T; Ogasawara N Mol Pharmacol; 1986 Mar; 29(3):244-9. PubMed ID: 3005832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]