These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29883104)

  • 1. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics.
    Lang SY; Xiao RJ; Gu L; Guo YG; Wen R; Wan LJ
    J Am Chem Soc; 2018 Jul; 140(26):8147-8155. PubMed ID: 29883104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li
    Longo RC; Camacho-Forero LE; Balbuena PB
    J Chem Phys; 2020 Jan; 152(1):014701. PubMed ID: 31914763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium-Sulfur Batteries: An In Situ AFM Study.
    Lang SY; Shi Y; Guo YG; Wen R; Wan LJ
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14433-14437. PubMed ID: 28929556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study.
    Lang SY; Shi Y; Guo YG; Wang D; Wen R; Wan LJ
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15835-15839. PubMed ID: 27860060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Mechanism of Catalytic Electrodes in Lithium-Oxygen Batteries: How Nanostructures Mediate the Interfacial Reactions.
    Shen ZZ; Zhou C; Wen R; Wan LJ
    J Am Chem Soc; 2020 Sep; 142(37):16007-16015. PubMed ID: 32815719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.
    Liu Z; Zhou L; Ge Q; Chen R; Ni M; Utetiwabo W; Zhang X; Yang W
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19311-19317. PubMed ID: 29800511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy.
    Lang S; Yu SH; Feng X; Krumov MR; Abruña HD
    Nat Commun; 2022 Aug; 13(1):4811. PubMed ID: 35973986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.
    Shyamsunder A; Beichel W; Klose P; Pang Q; Scherer H; Hoffmann A; Murphy GK; Krossing I; Nazar LF
    Angew Chem Int Ed Engl; 2017 May; 56(22):6192-6197. PubMed ID: 28464473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.
    Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B
    ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Property of Lithium-Sulfur Nanoparticles via Molecular Dynamics Simulation.
    Li Y; Romero NA; Lau KC
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37575-37585. PubMed ID: 30298723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation.
    Liu J; Lu D; Zheng J; Yan P; Wang B; Sun X; Shao Y; Wang C; Xiao J; Zhang JG; Liu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):21965-21972. PubMed ID: 29879356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium-Sulfur Batteries.
    Xie J; Song YW; Li BQ; Peng HJ; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22150-22155. PubMed ID: 32827183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.
    Zhang S; Ikoma A; Li Z; Ueno K; Ma X; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27803-27813. PubMed ID: 27668510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directing the Lithium-Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries.
    Lee CW; Pang Q; Ha S; Cheng L; Han SD; Zavadil KR; Gallagher KG; Nazar LF; Balasubramanian M
    ACS Cent Sci; 2017 Jun; 3(6):605-613. PubMed ID: 28691072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries.
    Zhong H; Wang C; Xu Z; Ding F; Liu X
    Sci Rep; 2016 May; 6():25484. PubMed ID: 27146645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.
    Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL
    Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.
    Chung SH; Manthiram A
    ChemSusChem; 2014 Jun; 7(6):1655-61. PubMed ID: 24700745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.