These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29883104)

  • 41. Single-Nanostructured Electrochemical Detection for Intrinsic Mechanism of Energy Storage: Progress and Prospect.
    Farooqi SA; Wang X; Lu H; Li Q; Tang K; Chen Y; Yan C
    Small; 2018 Dec; 14(50):e1803482. PubMed ID: 30375720
    [TBL] [Abstract][Full Text] [Related]  

  • 42. LiCrS
    Xu ZM; Bo SH; Zhu H
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36941-36953. PubMed ID: 30299927
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
    Fang X; Peng H
    Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.
    Carbone L; Gobet M; Peng J; Devany M; Scrosati B; Greenbaum S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13859-65. PubMed ID: 26057152
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
    Zu C; Manthiram A
    J Phys Chem Lett; 2014 Aug; 5(15):2522-7. PubMed ID: 26277939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sulfur-Rich Phosphorus Sulfide Molecules for Use in Rechargeable Lithium Batteries.
    Li X; Liang J; Lu Y; Hou Z; Cheng Q; Zhu Y; Qian Y
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):2937-2941. PubMed ID: 28185385
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram.
    Dibden JW; Smith JW; Zhou N; Garcia-Araez N; Owen JR
    Chem Commun (Camb); 2016 Oct; 52(87):12885-12888. PubMed ID: 27738668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-Dimensional Graphene-Carbon Nanotube-Ni Hierarchical Architecture as a Polysulfide Trap for Lithium-Sulfur Batteries.
    Gnana Kumar G; Chung SH; Raj Kumar T; Manthiram A
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20627-20634. PubMed ID: 29799717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Free-Energy Relationship in Lithium-Sulfur Batteries.
    Su CC; He M; Amine R; Amine K
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10591-10595. PubMed ID: 31087468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.
    Lu Y; Gu S; Guo J; Rui K; Chen C; Zhang S; Jin J; Yang J; Wen Z
    ACS Appl Mater Interfaces; 2017 May; 9(17):14878-14888. PubMed ID: 28406612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Revealing the Surface Effect of the Soluble Catalyst on Oxygen Reduction/Evolution in Li-O
    Shen ZZ; Lang SY; Shi Y; Ma JM; Wen R; Wan LJ
    J Am Chem Soc; 2019 May; 141(17):6900-6905. PubMed ID: 30966740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries.
    Hou TZ; Chen X; Peng HJ; Huang JQ; Li BQ; Zhang Q; Li B
    Small; 2016 Jun; 12(24):3283-91. PubMed ID: 27168000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A highly efficient polysulfide mediator for lithium-sulfur batteries.
    Liang X; Hart C; Pang Q; Garsuch A; Weiss T; Nazar LF
    Nat Commun; 2015 Jan; 6():5682. PubMed ID: 25562485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction.
    Guo J; Yang Z; Yu Y; Abruña HD; Archer LA
    J Am Chem Soc; 2013 Jan; 135(2):763-7. PubMed ID: 23234561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regenerative Polysulfide-Scavenging Layers Enabling Lithium-Sulfur Batteries with High Energy Density and Prolonged Cycling Life.
    Liu F; Xiao Q; Wu HB; Sun F; Liu X; Li F; Le Z; Shen L; Wang G; Cai M; Lu Y
    ACS Nano; 2017 Mar; 11(3):2697-2705. PubMed ID: 28190334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.
    Chen L; Liu Y; Zhang F; Liu C; Shaw LL
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25748-56. PubMed ID: 26529481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.