These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 29883537)
1. Fabrication and Characterization of β-Lactoglobulin-Based Nanocomplexes Composed of Chitosan Oligosaccharides as Vehicles for Delivery of Astaxanthin. Liu C; Liu Z; Sun X; Zhang S; Wang S; Feng F; Wang D; Xu Y J Agric Food Chem; 2018 Jul; 66(26):6717-6726. PubMed ID: 29883537 [TBL] [Abstract][Full Text] [Related]
2. Nanocomplexes composed of chitosan derivatives and β-Lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro. Ge J; Yue X; Wang S; Chi J; Liang J; Sun Y; Gao X; Yue P Food Res Int; 2019 Feb; 116():336-345. PubMed ID: 30716954 [TBL] [Abstract][Full Text] [Related]
3. Design of Astaxanthin-Loaded Core-Shell Nanoparticles Consisting of Chitosan Oligosaccharides and Poly(lactic- co-glycolic acid): Enhancement of Water Solubility, Stability, and Bioavailability. Liu C; Zhang S; McClements DJ; Wang D; Xu Y J Agric Food Chem; 2019 May; 67(18):5113-5121. PubMed ID: 31013074 [TBL] [Abstract][Full Text] [Related]
4. Kinetic interactions of nanocomplexes between astaxanthin esters with different molecular structures and β-lactoglobulin. Qiao X; Yang L; Gu J; Cao Y; Li Z; Xu J; Xue C Food Chem; 2021 Jan; 335():127633. PubMed ID: 32739813 [TBL] [Abstract][Full Text] [Related]
5. Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537 [TBL] [Abstract][Full Text] [Related]
6. Nanocomplexes derived from chitosan and whey protein isolate enhance the thermal stability and slow the release of anthocyanins in simulated digestion and prepared instant coffee. Wang S; Ye X; Sun Y; Liang J; Yue P; Gao X Food Chem; 2021 Jan; 336():127707. PubMed ID: 32763737 [TBL] [Abstract][Full Text] [Related]
7. Vitamin D3 cress seed mucilage -β-lactoglobulin nanocomplexes: Synthesis, characterization, encapsulation and simulated intestinal fluid in vitro release. Taheri A; Kashaninejad M; Tamaddon AM; Jafari SM Carbohydr Polym; 2021 Mar; 256():117420. PubMed ID: 33483012 [TBL] [Abstract][Full Text] [Related]
8. Improving the encapsulation efficiency and sustained release behaviour of chitosan/β-lactoglobulin double-coated microparticles by palmitic acid grafting. Yang HJ; Lee PS; Choe J; Suh S; Ko S Food Chem; 2017 Apr; 220():123-128. PubMed ID: 27855879 [TBL] [Abstract][Full Text] [Related]
9. Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: design and in vitro evaluation. Radivojša M; Grabnar I; Ahlin Grabnar P Eur J Pharm Sci; 2013 Sep; 50(1):93-101. PubMed ID: 23524253 [TBL] [Abstract][Full Text] [Related]
10. Coordinated encapsulation by β-cyclodextrin and chitosan derivatives improves the stability of anthocyanins. Liu R; Wang X; Yang L; Wang Y; Gao X Int J Biol Macromol; 2023 Jul; 242(Pt 4):125060. PubMed ID: 37245775 [TBL] [Abstract][Full Text] [Related]
11. Encapsulation of milk β-lactoglobulin by chitosan nanoparticles. Agudelo D; Nafisi S; Tajmir-Riahi HA J Phys Chem B; 2013 May; 117(21):6403-9. PubMed ID: 23651207 [TBL] [Abstract][Full Text] [Related]
12. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil. Di Martino A; Kucharczyk P; Capakova Z; Humpolicek P; Sedlarik V Int J Biol Macromol; 2017 Sep; 102():613-624. PubMed ID: 28431942 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization and bioavailability of ternary nanoparticles consisting of amylose, α-linoleic acid and β-lactoglobulin complexed with naringin. Feng T; Wang K; Liu F; Ye R; Zhu X; Zhuang H; Xu Z Int J Biol Macromol; 2017 Jun; 99():365-374. PubMed ID: 28263808 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant Nanocomplexes for Delivery of Epigallocatechin-3-gallate. Hu B; Ma F; Yang Y; Xie M; Zhang C; Xu Y; Zeng X J Agric Food Chem; 2016 May; 64(17):3422-9. PubMed ID: 27064900 [TBL] [Abstract][Full Text] [Related]
16. Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Wang Q; Zhao Y; Guan L; Zhang Y; Dang Q; Dong P; Li J; Liang X Food Chem; 2017 Jul; 227():9-15. PubMed ID: 28274463 [TBL] [Abstract][Full Text] [Related]
17. Calcium-binding casein phosphopeptides-loaded chitosan oligosaccharides core-shell microparticles for controlled calcium delivery: Fabrication, characterization, and in vivo release studies. Zhu B; Hou T; He H Int J Biol Macromol; 2020 Jul; 154():1347-1355. PubMed ID: 31760023 [TBL] [Abstract][Full Text] [Related]
18. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular. Li J; Tan G; Cheng B; Liu D; Pan W Eur J Pharm Biopharm; 2017 Nov; 120():89-97. PubMed ID: 28867370 [TBL] [Abstract][Full Text] [Related]
19. Chitosan oligosaccharide as prospective cross-linking agent for naproxen-loaded Ca-alginate microparticles with improved pH sensitivity. Čalija B; Milić J; Cekić N; Krajišnik D; Daniels R; Savić S Drug Dev Ind Pharm; 2013 Jan; 39(1):77-88. PubMed ID: 22339172 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Physicochemical Stability of β-Carotene Emulsions Stabilized by β-Lactoglobulin-Ferulic Acid-Chitosan Ternary Conjugate. Wang D; Lv P; Zhang L; Yang S; Wei Y; Mao L; Yuan F; Gao Y J Agric Food Chem; 2020 Aug; 68(31):8404-8412. PubMed ID: 32672950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]