These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29883538)

  • 1. Toward the Authentication of European Sea Bass Origin through a Combination of Biometric Measurements and Multiple Analytical Techniques.
    Farabegoli F; Pirini M; Rotolo M; Silvi M; Testi S; Ghidini S; Zanardi E; Remondini D; Bonaldo A; Parma L; Badiani A
    J Agric Food Chem; 2018 Jul; 66(26):6822-6831. PubMed ID: 29883538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of nonparametric multivariate analyses to the authentication of wild and farmed European sea bass (Dicentrarchus labrax). Results of a survey on fish sampled in the retail trade.
    Fasolato L; Novelli E; Salmaso L; Corain L; Camin F; Perini M; Antonetti P; Balzan S
    J Agric Food Chem; 2010 Oct; 58(20):10979-88. PubMed ID: 20857938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid authentication of European sea bass (Dicentrarchus labrax L.) according to production method, farming system, and geographical origin by near infrared spectroscopy coupled with chemometrics.
    Ghidini S; Varrà MO; Dall'Asta C; Badiani A; Ianieri A; Zanardi E
    Food Chem; 2019 May; 280():321-327. PubMed ID: 30642503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of wild and cultured european sea bass (Dicentrarchus labrax) using chemical and isotopic analyses.
    Bell JG; Preston T; Henderson RJ; Strachan F; Bron JE; Cooper K; Morrison DJ
    J Agric Food Chem; 2007 Jul; 55(15):5934-41. PubMed ID: 17595104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of near-infrared spectroscopy for fast fraud detection in seafood: application to the authentication of wild European sea bass (Dicentrarchus labrax).
    Ottavian M; Facco P; Fasolato L; Novelli E; Mirisola M; Perini M; Barolo M
    J Agric Food Chem; 2012 Jan; 60(2):639-48. PubMed ID: 22224758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional Characterization of Sea Bass Processing By-Products.
    Munekata PES; Pateiro M; Domínguez R; Zhou J; Barba FJ; Lorenzo JM
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32033107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural elucidation of olive pomace fed sea bass (Dicentrarchus labrax) polar lipids with cardioprotective activities.
    Nasopoulou C; Smith T; Detopoulou M; Tsikrika C; Papaharisis L; Barkas D; Zabetakis I
    Food Chem; 2014 Feb; 145():1097-105. PubMed ID: 24128590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier transform infrared spectroscopy as a tool to study farmed and wild sea bass lipid composition.
    Vidal NP; Goicoechea E; Manzanos MJ; Guillén MD
    J Sci Food Agric; 2014 May; 94(7):1340-8. PubMed ID: 24834498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of compound-specific isotope analysis of fatty acids for traceability of sea cucumber (Apostichopus japonicus) in the coastal areas of China.
    Liu Y; Zhang X; Li Y; Wang H
    J Sci Food Agric; 2017 Nov; 97(14):4912-4921. PubMed ID: 28397256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Authentication of European sea bass according to production method and geographical origin by light stable isotope ratio and rare earth elements analyses combined with chemometrics.
    Varrà MO; Ghidini S; Zanardi E; Badiani A; Ianieri A
    Ital J Food Saf; 2019 Mar; 8(1):7872. PubMed ID: 31008086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical impacts in adult and juvenile farmed European seabass and gilthead seabream from semi-intensive aquaculture of southern European estuarine systems.
    Rocha CP; Cabral HN; Nunes C; Coimbra MA; Gonçalves FJM; Marques JC; Gonçalves AMM
    Environ Sci Pollut Res Int; 2019 May; 26(13):13422-13440. PubMed ID: 30905015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: Effects on leucocytes and plasma fatty acid profiles, selected immune parameters and circulating prostaglandins levels.
    Torrecillas S; Román L; Rivero-Ramírez F; Caballero MJ; Pascual C; Robaina L; Izquierdo MS; Acosta F; Montero D
    Fish Shellfish Immunol; 2017 May; 64():437-445. PubMed ID: 28359945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Use of Stable Isotope Ratio Analysis to Trace European Sea Bass (
    Tulli F; Moreno-Rojas JM; Messina CM; Trocino A; Xiccato G; Muñoz-Redondo JM; Santulli A; Tibaldi E
    Animals (Basel); 2020 Nov; 10(11):. PubMed ID: 33167344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of partial substitution of dietary fish oil with blends of vegetable oils, on blood leucocyte fatty acid compositions, immune function and histology in European sea bass (Dicentrarchus labrax L).
    Mourente G; Good JE; Thompson KD; Bell JG
    Br J Nutr; 2007 Oct; 98(4):770-9. PubMed ID: 17466094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet.
    Mourente G; Bell JG
    Comp Biochem Physiol B Biochem Mol Biol; 2006; 145(3-4):389-99. PubMed ID: 17055762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Authenticating production origin of gilthead sea bream (Sparus aurata) by chemical and isotopic fingerprinting.
    Morrison DJ; Preston T; Bron JE; Hemderson RJ; Cooper K; Strachan F; Bell JG
    Lipids; 2007 Jun; 42(6):537-45. PubMed ID: 17464521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of different salting processes on the evolution of the volatile metabolites of vacuum-packed fillets of farmed and wild sea bass (Dicentrarchus labrax) stored under refrigeration conditions: a study by SPME-GC/MS.
    Vidal NP; Manzanos MJ; Goicoechea E; Guillén MD
    J Sci Food Agric; 2017 Feb; 97(3):967-976. PubMed ID: 27225021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish consumption and risk of contamination by mercury---considerations on the definition of edible parts based on the case study of European sea bass.
    Mieiro CL; Pacheco M; Duarte AC; Pereira ME
    Mar Pollut Bull; 2011 Dec; 62(12):2850-3. PubMed ID: 22041498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Will seabass (Dicentrarchus labrax) quality change in a warmer ocean?
    Barbosa V; Maulvault AL; Alves RN; Anacleto P; Pousão-Ferreira P; Carvalho ML; Nunes ML; Rosa R; Marques A
    Food Res Int; 2017 Jul; 97():27-36. PubMed ID: 28578051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quality of farmed and wild sea bass lipids studied by (1)H NMR: usefulness of this technique for differentiation on a qualitative and a quantitative basis.
    Vidal NP; Manzanos MJ; Goicoechea E; Guillén MD
    Food Chem; 2012 Dec; 135(3):1583-91. PubMed ID: 22953897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.