These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29883543)

  • 1. Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation.
    Zhou Y; Ji Q; Liu H; Qu J
    Environ Sci Technol; 2018 Jul; 52(13):7477-7485. PubMed ID: 29883543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interlocked Graphene Oxide Provides Narrow Channels for Effective Water Desalination through Forward Osmosis.
    Padmavathy N; Behera SS; Pathan S; Das Ghosh L; Bose S
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7566-7575. PubMed ID: 30681825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a Hierarchical Porous-Structured Reactor to Mitigate Mass Transport Limitations for Efficient Electrocatalytic Ammonia Oxidation through a Three-Electron-Transfer Pathway.
    Liu Z; Zhang G; Lan H; Liu H; Qu J
    Environ Sci Technol; 2021 Sep; 55(18):12596-12606. PubMed ID: 34495652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating the Interlayer Spacing of Graphene Oxide Membranes and Enhancing their Stability by Use of PACl.
    Liu T; Tian L; Graham N; Yang B; Yu W; Sun K
    Environ Sci Technol; 2019 Oct; 53(20):11949-11959. PubMed ID: 31538767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of interlayer spacing and oxidation degree of graphene oxide nanosheets on water permeation: a molecular dynamics study.
    Tan Q; Fan Y; Song Z; Chen J; Chen L
    J Mol Model; 2022 Feb; 28(3):57. PubMed ID: 35137256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Opening of Impermeable Nanochannels in Laminar Graphene Membranes for Ultrafast Nanofiltration.
    Wei G; Du L; Zhang H; Xing J; Chen S; Quan X
    Environ Sci Technol; 2023 Mar; 57(9):3843-3852. PubMed ID: 36824031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous graphene materials for water remediation.
    Niu Z; Liu L; Zhang L; Chen X
    Small; 2014 Sep; 10(17):3434-41. PubMed ID: 24619776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.
    Cheng C; Jiang G; Garvey CJ; Wang Y; Simon GP; Liu JZ; Li D
    Sci Adv; 2016 Feb; 2(2):e1501272. PubMed ID: 26933689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-based macroscopic assemblies and architectures: an emerging material system.
    Cong HP; Chen JF; Yu SH
    Chem Soc Rev; 2014 Nov; 43(21):7295-325. PubMed ID: 25065466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants.
    Yousefi N; Wong KKW; Hosseinidoust Z; Sørensen HO; Bruns S; Zheng Y; Tufenkji N
    Nanoscale; 2018 Apr; 10(15):7171-7184. PubMed ID: 29620092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical porous microspheres of the Co
    Yang M; Jeong JM; Lee KG; Kim DH; Lee SJ; Choi BG
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):612-619. PubMed ID: 26852829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifting Emphasis from Electro- to Catalytically Active Sites: Effects of Pore Size of Flow-Through Anodes on Water Purification.
    Yang K; Zhang X; Zu D; Zhou H; Ma J; Yang Z
    Environ Sci Technol; 2023 Dec; 57(48):20421-20430. PubMed ID: 37971949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Immuno-Biochip for Detection of Breast Cancer Biomarkers Using Hierarchical Composite of Porous Graphene and Titanium Dioxide Nanofibers.
    Ali MA; Mondal K; Jiao Y; Oren S; Xu Z; Sharma A; Dong L
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20570-82. PubMed ID: 27442623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Aqueous Stability and Filtration Capability of MoS
    Wang Z; Tu Q; Zheng S; Urban JJ; Li S; Mi B
    Nano Lett; 2017 Dec; 17(12):7289-7298. PubMed ID: 29160714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures.
    Jiang L; Fan Z
    Nanoscale; 2014 Feb; 6(4):1922-45. PubMed ID: 24301688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance.
    Fan HS; Wang H; Zhao N; Xu J; Pan F
    Sci Rep; 2014 Dec; 4():7426. PubMed ID: 25519206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells.
    Qiu HJ; Guan Y; Luo P; Wang Y
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):85-95. PubMed ID: 26711357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.