These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 29883638)
1. A comprehensive spatial-temporal transcriptomic analysis of differentiating nascent mouse lens epithelial and fiber cells. Zhao Y; Zheng D; Cvekl A Exp Eye Res; 2018 Oct; 175():56-72. PubMed ID: 29883638 [TBL] [Abstract][Full Text] [Related]
2. Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Zhao Y; Wilmarth PA; Cheng C; Limi S; Fowler VM; Zheng D; David LL; Cvekl A Exp Eye Res; 2019 Feb; 179():32-46. PubMed ID: 30359574 [TBL] [Abstract][Full Text] [Related]
3. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways. Zhao Y; Zheng D; Cvekl A Epigenetics Chromatin; 2019 May; 12(1):27. PubMed ID: 31053165 [TBL] [Abstract][Full Text] [Related]
4. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators. Sun J; Rockowitz S; Chauss D; Wang P; Kantorow M; Zheng D; Cvekl A Mol Vis; 2015; 21():955-73. PubMed ID: 26330747 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing. Hoang TV; Kumar PK; Sutharzan S; Tsonis PA; Liang C; Robinson ML Mol Vis; 2014; 20():1491-517. PubMed ID: 25489224 [TBL] [Abstract][Full Text] [Related]
6. Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Cain S; Martinez G; Kokkinos MI; Turner K; Richardson RJ; Abud HE; Huelsken J; Robinson ML; de Iongh RU Dev Biol; 2008 Sep; 321(2):420-33. PubMed ID: 18652817 [TBL] [Abstract][Full Text] [Related]
7. Ectopic activation of Wnt/β-catenin signaling in lens fiber cells results in cataract formation and aberrant fiber cell differentiation. Antosova B; Smolikova J; Borkovcova R; Strnad H; Lachova J; Machon O; Kozmik Z PLoS One; 2013; 8(10):e78279. PubMed ID: 24205179 [TBL] [Abstract][Full Text] [Related]
9. Regulation of c-Maf and αA-Crystallin in Ocular Lens by Fibroblast Growth Factor Signaling. Xie Q; McGreal R; Harris R; Gao CY; Liu W; Reneker LW; Musil LS; Cvekl A J Biol Chem; 2016 Feb; 291(8):3947-58. PubMed ID: 26719333 [TBL] [Abstract][Full Text] [Related]
10. Deregulation of lens epithelial cell proliferation and differentiation during the development of TGFbeta-induced anterior subcapsular cataract. Lovicu FJ; Ang S; Chorazyczewska M; McAvoy JW Dev Neurosci; 2004; 26(5-6):446-55. PubMed ID: 15855773 [TBL] [Abstract][Full Text] [Related]
11. Etv transcription factors functionally diverge from their upstream FGF signaling in lens development. Garg A; Hannan A; Wang Q; Makrides N; Zhong J; Li H; Yoon S; Mao Y; Zhang X Elife; 2020 Feb; 9():. PubMed ID: 32043969 [TBL] [Abstract][Full Text] [Related]
12. Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Lovicu FJ; Overbeek PA Development; 1998 Sep; 125(17):3365-77. PubMed ID: 9693140 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of FGF2-dependent mRNA: microRNA networks during lens fiber cell differentiation. Wolf L; Gao CS; Gueta K; Xie Q; Chevallier T; Podduturi NR; Sun J; Conte I; Zelenka PS; Ashery-Padan R; Zavadil J; Cvekl A G3 (Bethesda); 2013 Dec; 3(12):2239-55. PubMed ID: 24142921 [TBL] [Abstract][Full Text] [Related]
14. Tissue-specific regulation of the mouse alphaA-crystallin gene in lens via recruitment of Pax6 and c-Maf to its promoter. Yang Y; Cvekl A J Mol Biol; 2005 Aug; 351(3):453-69. PubMed ID: 16023139 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional regulation of mouse alphaB- and gammaF-crystallin genes in lens: opposite promoter-specific interactions between Pax6 and large Maf transcription factors. Yang Y; Chauhan BK; Cveklova K; Cvekl A J Mol Biol; 2004 Nov; 344(2):351-68. PubMed ID: 15522290 [TBL] [Abstract][Full Text] [Related]
16. HSF4 is required for normal cell growth and differentiation during mouse lens development. Fujimoto M; Izu H; Seki K; Fukuda K; Nishida T; Yamada S; Kato K; Yonemura S; Inouye S; Nakai A EMBO J; 2004 Oct; 23(21):4297-306. PubMed ID: 15483628 [TBL] [Abstract][Full Text] [Related]
17. The orchestration of mammalian tissue morphogenesis through a series of coherent feed-forward loops. Xie Q; Cvekl A J Biol Chem; 2011 Dec; 286(50):43259-71. PubMed ID: 21998302 [TBL] [Abstract][Full Text] [Related]
18. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Lachke SA Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599 [TBL] [Abstract][Full Text] [Related]
19. Lens Development and Crystallin Gene Expression. Cvekl A; McGreal R; Liu W Prog Mol Biol Transl Sci; 2015; 134():129-67. PubMed ID: 26310154 [TBL] [Abstract][Full Text] [Related]
20. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens. Cvekl A; Yang Y; Chauhan BK; Cveklova K Int J Dev Biol; 2004; 48(8-9):829-44. PubMed ID: 15558475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]