BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29883688)

  • 1. Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE.
    Motani K; Kosako H
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):57-61. PubMed ID: 29883688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE.
    Kosako H; Motani K
    Methods Mol Biol; 2017; 1487():137-149. PubMed ID: 27924564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and validation of new ERK substrates by phosphoproteomic technologies including Phos-tag SDS-PAGE.
    Yoshikawa H; Nishino K; Kosako H
    J Proteomics; 2022 Apr; 258():104543. PubMed ID: 35231659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of protein phosphorylation using two-dimensional difference gel electrophoresis.
    Deng Z; Bu S; Wang ZY
    Methods Mol Biol; 2012; 876():47-66. PubMed ID: 22576085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways.
    Kosako H; Nagano K
    Expert Rev Proteomics; 2011 Feb; 8(1):81-94. PubMed ID: 21329429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic identification of p38 MAP kinase substrates using in vitro phosphorylation.
    Iida N; Fujita M; Miyazawa K; Kobayashi M; Hattori S
    Electrophoresis; 2014 Feb; 35(4):554-62. PubMed ID: 24288278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in Phos-tag electrophoresis for the analysis of phosphoproteins in proteomics.
    Hirano H; Shirakawa J
    Expert Rev Proteomics; 2022 Feb; 19(2):103-114. PubMed ID: 35285370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphopeptide Detection with Biotin-Labeled Phos-tag.
    Kinoshita-Kikuta E; Kinoshita E; Koike T
    Methods Mol Biol; 2016; 1355():17-29. PubMed ID: 26584916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Phos-tag-based methodologies for separation and detection of the phosphoproteome.
    Kinoshita E; Kinoshita-Kikuta E; Koike T
    Biochim Biophys Acta; 2015 Jun; 1854(6):601-8. PubMed ID: 25315852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The coming of age of phosphoproteomics--from large data sets to inference of protein functions.
    Roux PP; Thibault P
    Mol Cell Proteomics; 2013 Dec; 12(12):3453-64. PubMed ID: 24037665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of protein kinases by Phos-tag SDS-PAGE.
    Sugiyama Y; Uezato Y
    J Proteomics; 2022 Mar; 255():104485. PubMed ID: 35065289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DIGE-Based Phosphoproteomic Analysis.
    Stasyk T; Huber LA
    Methods Mol Biol; 2018; 1664():79-86. PubMed ID: 29019126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIGE-Based Phosphoproteomic Analysis.
    Stasyk T; Huber LA
    Methods Mol Biol; 2023; 2596():97-104. PubMed ID: 36378433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. History of Phos-tag technology for phosphoproteomics.
    Kinoshita E; Kinoshita-Kikuta E; Koike T
    J Proteomics; 2022 Feb; 252():104432. PubMed ID: 34818585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology.
    Moreira Dde S; Pescher P; Laurent C; Lenormand P; Späth GF; Murta SM
    Proteomics; 2015 Sep; 15(17):2999-3019. PubMed ID: 25959087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Gel Electrophoresis and 2D-DIGE.
    Meleady P
    Methods Mol Biol; 2018; 1664():3-14. PubMed ID: 29019120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Direct Kinase Substrates Using Analogue-Sensitive Alleles.
    Rothenberg DA; Gordon EA; White FM; Lourido S
    Methods Mol Biol; 2016; 1355():71-84. PubMed ID: 26584919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomic Approaches for Identifying Phosphatase and Kinase Substrates.
    DeMarco AG; Hall MC
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomic analysis of the striatum from pleiotrophin knockout and midkine knockout mice treated with cocaine reveals regulation of oxidative stress-related proteins potentially underlying cocaine-induced neurotoxicity and neurodegeneration.
    Vicente-Rodríguez M; Gramage E; Herradón G; Pérez-García C
    Toxicology; 2013 Dec; 314(1):166-73. PubMed ID: 24096156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.