BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 29883798)

  • 1. Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction.
    Borchert A; Kalms J; Roth SR; Rademacher M; Schmidt A; Holzhutter HG; Kuhn H; Scheerer P
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):1095-1107. PubMed ID: 29883798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal and solution structural studies of mouse phospholipid hydroperoxide glutathione peroxidase 4.
    Janowski R; Scanu S; Niessing D; Madl T
    Acta Crystallogr F Struct Biol Commun; 2016 Oct; 72(Pt 10):743-749. PubMed ID: 27710939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center.
    Cozza G; Rossetto M; Bosello-Travain V; Maiorino M; Roveri A; Toppo S; Zaccarin M; Zennaro L; Ursini F
    Free Radic Biol Med; 2017 Nov; 112():1-11. PubMed ID: 28709976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and structural analysis of human selenium-dependent glutathione peroxidase 4 mutant expressed in Escherichia coli.
    Yu Y; Song J; Guo X; Wang S; Yang X; Chen L; Wei J
    Free Radic Biol Med; 2014 Jun; 71():332-338. PubMed ID: 24681209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and characterization of recombinant bifunctional enzymes with glutathione peroxidase and superoxide dismutase activities.
    Guan T; Song J; Wang Y; Guo L; Yuan L; Zhao Y; Gao Y; Lin L; Wang Y; Wei J
    Free Radic Biol Med; 2017 Sep; 110():188-195. PubMed ID: 28603086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase.
    Reyes AM; Vazquez DS; Zeida A; Hugo M; Piñeyro MD; De Armas MI; Estrin D; Radi R; Santos J; Trujillo M
    Free Radic Biol Med; 2016 Dec; 101():249-260. PubMed ID: 27751911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phosphoglycerate kinase 1 variants found in carcinoma cells display different catalytic activity and conformational stability compared to the native enzyme.
    Fiorillo A; Petrosino M; Ilari A; Pasquo A; Cipollone A; Maggi M; Chiaraluce R; Consalvi V
    PLoS One; 2018; 13(7):e0199191. PubMed ID: 29995887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of APRT from Francisella tularensis - an N-H···N hydrogen bond imparts adenine specificity in adenine phosporibosyltransferases.
    Pavithra GC; Ramagopal UA
    FEBS J; 2018 Jun; 285(12):2306-2318. PubMed ID: 29694705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties.
    Bailleul G; Nicoll CR; Mascotti ML; Mattevi A; Fraaije MW
    J Biol Chem; 2021; 296():100221. PubMed ID: 33759784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase genes in rainbow trout (Oncorhynchus mykiss) and their modulation by in vitro selenium exposure.
    Pacitti D; Wang T; Page MM; Martin SA; Sweetman J; Feldmann J; Secombes CJ
    Aquat Toxicol; 2013 Apr; 130-131():97-111. PubMed ID: 23384997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study.
    Orian L; Mauri P; Roveri A; Toppo S; Benazzi L; Bosello-Travain V; De Palma A; Maiorino M; Miotto G; Zaccarin M; Polimeno A; Flohé L; Ursini F
    Free Radic Biol Med; 2015 Oct; 87():1-14. PubMed ID: 26163004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side-by-side comparison of recombinant human glutathione peroxidases identifies overlapping substrate specificities for soluble hydroperoxides.
    Schwarz M; Löser A; Cheng Q; Wichmann-Costaganna M; Schädel P; Werz O; Arnér ES; Kipp AP
    Redox Biol; 2023 Feb; 59():102593. PubMed ID: 36608588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of carboxypeptidase T complexes with transition-state analogs.
    Akparov VK; Timofeev VI; Khaliullin IG; Švedas V; Kuranova IP; Rakitina TV
    J Biomol Struct Dyn; 2018 Nov; 36(15):3958-3966. PubMed ID: 29129130
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of selenium-containing glutathione transferase zeta1-1 with high GPX activity prepared in eukaryotic cells.
    Yin L; Song J; Board PG; Yu Y; Han X; Wei J
    J Mol Recognit; 2013 Jan; 26(1):38-45. PubMed ID: 23280616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis.
    Xu J; Song J; Yan F; Chu H; Luo J; Zhao Y; Cheng X; Luo G; Zheng Q; Wei J
    J Mol Recognit; 2009; 22(4):293-300. PubMed ID: 19277948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties.
    Kiliszek A; Rypniewski W; Rząd K; Milewski S; Gabriel I
    J Struct Biol; 2019 Mar; 205(3):26-33. PubMed ID: 30742897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4).
    Scheerer P; Borchert A; Krauss N; Wessner H; Gerth C; Höhne W; Kuhn H
    Biochemistry; 2007 Aug; 46(31):9041-9. PubMed ID: 17630701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique active site formation in a novel galactose 1-phosphate uridylyltransferase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
    Ohshida T; Hayashi J; Yoneda K; Ohshima T; Sakuraba H
    Proteins; 2020 May; 88(5):669-678. PubMed ID: 31693208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis for the folding of β-helical autotransporter passenger domains.
    Yuan X; Johnson MD; Zhang J; Lo AW; Schembri MA; Wijeyewickrema LC; Pike RN; Huysmans GHM; Henderson IR; Leyton DL
    Nat Commun; 2018 Apr; 9(1):1395. PubMed ID: 29643377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.