These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 29883864)
1. Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V). Ren HT; Ji ZY; Wu SH; Han X; Liu ZM; Jia SY Chemosphere; 2018 Oct; 208():294-302. PubMed ID: 29883864 [TBL] [Abstract][Full Text] [Related]
2. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III). Zhang J; Li W; Li Y; Zhou L; Lan Y Environ Pollut; 2019 Feb; 245():711-718. PubMed ID: 30500750 [TBL] [Abstract][Full Text] [Related]
3. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite. Wang Y; Gao M; Huang W; Wang T; Liu Y Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneous photocatalytic degradation of methyl orange in schwertmannite/oxalate suspension under UV irradiation. Wu Y; Guo J; Jiang D; Zhou P; Lan Y; Zhou L Environ Sci Pollut Res Int; 2012 Jul; 19(6):2313-20. PubMed ID: 22237507 [TBL] [Abstract][Full Text] [Related]
5. Photoreductive dissolution of schwertmannite loaded with Cr(VI) induced by tartaric acid. Shi Y; Zhong R; Zhou L; Lan Y; Guo J Chemosphere; 2021 Aug; 276():130127. PubMed ID: 33690038 [TBL] [Abstract][Full Text] [Related]
6. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551 [TBL] [Abstract][Full Text] [Related]
7. Sorption of arsenic(V) and arsenic(III) to schwertmannite. Burton ED; Bush RT; Johnston SG; Watling KM; Hocking RK; Sullivan LA; Parker GK Environ Sci Technol; 2009 Dec; 43(24):9202-7. PubMed ID: 19921855 [TBL] [Abstract][Full Text] [Related]
8. Photodegradation of para-arsanilic acid mediated by photolysis of iron(III) oxalate complexes. Tyutereva YE; Sherin PS; Polyakova EV; Koscheeva OS; Grivin VP; Plyusnin VF; Shuvaeva OV; Pozdnyakov IP Chemosphere; 2020 Dec; 261():127770. PubMed ID: 32731031 [TBL] [Abstract][Full Text] [Related]
9. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms. Fan C; Guo C; Zhang J; Ding C; Li X; Reinfelder JR; Lu G; Shi Z; Dang Z J Environ Sci (China); 2019 Jun; 80():218-228. PubMed ID: 30952339 [TBL] [Abstract][Full Text] [Related]
10. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Cutting RS; Coker VS; Telling ND; Kimber RL; van der Laan G; Pattrick RA; Vaughan DJ; Arenholz E; Lloyd JR Environ Sci Technol; 2012 Nov; 46(22):12591-9. PubMed ID: 23043215 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution. Li FB; Li XZ; Li XM; Liu TX; Dong J J Colloid Interface Sci; 2007 Jul; 311(2):481-90. PubMed ID: 17451730 [TBL] [Abstract][Full Text] [Related]
12. As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Paikaray S; Göttlicher J; Peiffer S Chemosphere; 2012 Feb; 86(6):557-64. PubMed ID: 22138337 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneous photodegradation of pentachlorophenol with maghemite and oxalate under UV illumination. Lan Q; Li F; Liu C; Li XZ Environ Sci Technol; 2008 Nov; 42(21):7918-23. PubMed ID: 19031881 [TBL] [Abstract][Full Text] [Related]
14. Antimony(V) Incorporation into Schwertmannite: Critical Insights on Antimony Retention in Acidic Environments. Rastegari M; Karimian N; Johnston SG; Doherty SJ; Hamilton JL; Choppala G; Hosseinpour Moghaddam M; Burton ED Environ Sci Technol; 2022 Dec; 56(24):17776-17784. PubMed ID: 36445713 [TBL] [Abstract][Full Text] [Related]
15. Abiotic oxidation of Mn(II) induced oxidation and mobilization of As(III) in the presence of magnetite and hematite. Ren HT; Jia SY; Wu SH; Liu Y; Hua C; Han X J Hazard Mater; 2013 Jun; 254-255():89-97. PubMed ID: 23587932 [TBL] [Abstract][Full Text] [Related]
16. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei. Zhang Y; Gao K; Dang Z; Huang W; Reinfelder JR; Ren Y Sci Total Environ; 2021 Apr; 764():144279. PubMed ID: 33401041 [TBL] [Abstract][Full Text] [Related]
17. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
18. Photo-redox reactions of dicarboxylates and α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR spectroscopy. Borer P; Hug SJ J Colloid Interface Sci; 2014 Feb; 416():44-53. PubMed ID: 24370400 [TBL] [Abstract][Full Text] [Related]
19. Dependence of bisphenol A photodegradation on the initial concentration of oxalate in the lepidocrocite-oxalate complex system. Dong J; Li FB; Lan CY; Liu CS; Li XM; Luan TG J Environ Sci (China); 2006; 18(4):777-82. PubMed ID: 17078560 [TBL] [Abstract][Full Text] [Related]
20. Removal of azo dye C.I. acid red 14 from contaminated water using Fenton, UV/H(2)O(2), UV/H(2)O(2)/Fe(II), UV/H(2)O(2)/Fe(III) and UV/H(2)O(2)/Fe(III)/oxalate processes: a comparative study. Daneshvar N; Khataee AR J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(3):315-28. PubMed ID: 16484066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]