These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29884030)

  • 1. Abnormal blueshift of the absorption edge in graphene nanodots.
    Sheng W
    J Chem Phys; 2018 Jun; 148(21):214301. PubMed ID: 29884030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark excitons and tunable optical gap in graphene nanodots.
    Zhang Y; Sheng W; Li Y
    Phys Chem Chem Phys; 2017 Aug; 19(34):23131-23137. PubMed ID: 28820198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal scaling of excitons in phosphorene quantum dots.
    Zhong J; Huang L; Sheng W
    Phys Chem Chem Phys; 2020 Mar; 22(10):5723-5728. PubMed ID: 32104811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication: generalization of Koopmans' theorem to optical transitions in the Hubbard model of graphene nanodots.
    Sheng W; Luo K; Zhou A
    J Chem Phys; 2015 Jan; 142(2):021102. PubMed ID: 25591331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling of excitons in graphene nanodots.
    Sheng W; Wang H
    Phys Chem Chem Phys; 2016 Oct; 18(40):28365-28369. PubMed ID: 27711650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hubbard excitons in two-dimensional nanomaterials.
    Huang L; Xie J; Sheng W
    J Phys Condens Matter; 2019 Jul; 31(27):275302. PubMed ID: 30952139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitonic absorption spectra in graphene nanoflakes: Tuning of exciton binding energy by dielectric environments.
    Wang H; Sheng W
    J Chem Phys; 2017 Feb; 146(8):084705. PubMed ID: 28249450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric screening of excitons in monolayer graphene.
    Yadav P; Srivastava PK; Ghosh S
    Nanoscale; 2015 Nov; 7(43):18015-9. PubMed ID: 26469682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the magnetic phase of a graphene nanodot using its dielectric environment.
    Sheng W; Zhang Y; Zhou A
    Nanotechnology; 2016 Apr; 27(15):155201. PubMed ID: 26926209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-controlled excitonic effects on electronic and optical properties of Sb
    Peng Y; Xia C; Tan Z; An J; Zhang Q
    Phys Chem Chem Phys; 2019 Dec; 21(48):26515-26524. PubMed ID: 31777912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable optical and excitonic properties of phosphorene via oxidation.
    Sadki S; Drissi LB
    J Phys Condens Matter; 2018 Jun; 30(25):255703. PubMed ID: 29749957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2).
    Chernikov A; Berkelbach TC; Hill HM; Rigosi A; Li Y; Aslan OB; Reichman DR; Hybertsen MS; Heinz TF
    Phys Rev Lett; 2014 Aug; 113(7):076802. PubMed ID: 25170725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of excited carriers on the optical and electronic properties of MoS₂.
    Steinhoff A; Rösner M; Jahnke F; Wehling TO; Gies C
    Nano Lett; 2014 Jul; 14(7):3743-8. PubMed ID: 24956358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-modulated photo-absorption in adsorbed azobenzene monolayers.
    Fu Q; Cocchi C; Nabok D; Gulans A; Draxl C
    Phys Chem Chem Phys; 2017 Feb; 19(8):6196-6205. PubMed ID: 28230215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band Gap Tuning of CH₃NH₃Pb(Br(1-x)Clx)₃ Hybrid Perovskite for Blue Electroluminescence.
    Kumawat NK; Dey A; Kumar A; Gopinathan SP; Narasimhan KL; Kabra D
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13119-24. PubMed ID: 26050553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional exciton properties in monolayer semiconducting phosphorus allotropes.
    Villegas CE; Rodin AS; Carvalho A; Rocha AR
    Phys Chem Chem Phys; 2016 Oct; 18(40):27829-27836. PubMed ID: 27711643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitonic Effects in Methylammonium Lead Halide Perovskites.
    Chen X; Lu H; Yang Y; Beard MC
    J Phys Chem Lett; 2018 May; 9(10):2595-2603. PubMed ID: 29714488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Exciton Redshift-Blueshift Crossover in Monolayer WS
    Sie EJ; Steinhoff A; Gies C; Lui CH; Ma Q; Rösner M; Schönhoff G; Jahnke F; Wehling TO; Lee YH; Kong J; Jarillo-Herrero P; Gedik N
    Nano Lett; 2017 Jul; 17(7):4210-4216. PubMed ID: 28621953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons.
    Soavi G; Dal Conte S; Manzoni C; Viola D; Narita A; Hu Y; Feng X; Hohenester U; Molinari E; Prezzi D; Müllen K; Cerullo G
    Nat Commun; 2016 Mar; 7():11010. PubMed ID: 26984281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons.
    Wang M; Li CM
    Nanoscale; 2011 May; 3(5):2324-8. PubMed ID: 21503364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.