These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29884031)

  • 21. Dimerization Mechanism of Alzheimer Aβ
    Nguyen PH; Sterpone F; Pouplana R; Derreumaux P; Campanera JM
    J Phys Chem B; 2016 Dec; 120(47):12111-12126. PubMed ID: 27933940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aggregation rate of amyloid beta peptide is controlled by beta-content in monomeric state.
    Thu TTM; Co NT; Tu LA; Li MS
    J Chem Phys; 2019 Jun; 150(22):225101. PubMed ID: 31202253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Aβ
    Man VH; He X; Derreumaux P; Ji B; Xie XQ; Nguyen PH; Wang J
    J Chem Theory Comput; 2019 Feb; 15(2):1440-1452. PubMed ID: 30633867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulation and computational two-dimensional infrared spectroscopic study of model amyloid β-peptide oligomers.
    Xu J; Zhang JZ; Xiang Y
    J Phys Chem A; 2013 Jul; 117(29):6373-9. PubMed ID: 23641734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amyloid assembly is dominated by misregistered kinetic traps on an unbiased energy landscape.
    Jia Z; Schmit JD; Chen J
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10322-10328. PubMed ID: 32345723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca(2+), within the physiological concentrations, selectively accelerates Abeta42 fibril formation and not Abeta40 in vitro.
    Ahmad A; Muzaffar M; Ingram VM
    Biochim Biophys Acta; 2009 Oct; 1794(10):1537-48. PubMed ID: 19595795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of Aβ-fibril fragments in the presence of fatty acids.
    Xi W; Vanderford EK; Liao Q; Hansmann UHE
    Protein Sci; 2019 Nov; 28(11):1973-1981. PubMed ID: 31461191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The membrane-active amphibian peptide caerin 1.8 inhibits fibril formation of amyloid β1-42.
    Liu Y; Wang T; Calabrese AN; Carver JA; Cummins SF; Bowie JH
    Peptides; 2015 Nov; 73():1-6. PubMed ID: 26275335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations.
    Sasmal S; Schwierz N; Head-Gordon T
    J Phys Chem B; 2016 Dec; 120(47):12088-12097. PubMed ID: 27806205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation.
    Abelein A; Gräslund A; Danielsson J
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5407-12. PubMed ID: 25825723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disordered versus fibril-like amyloid β (25-35) dimers in water: structure and thermodynamics.
    Kittner M; Knecht V
    J Phys Chem B; 2010 Nov; 114(46):15288-95. PubMed ID: 20964446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Levinthal Problem in Amyloid Aggregation: Sampling of a Flat Reaction Space.
    Jia Z; Beugelsdijk A; Chen J; Schmit JD
    J Phys Chem B; 2017 Feb; 121(7):1576-1586. PubMed ID: 28129689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic and thermodynamic stability comparison for the fibrillar form of small amyloid-β(1-42) oligomers using scaled molecular dynamics.
    Saha D; Jana B
    Phys Chem Chem Phys; 2021 Aug; 23(31):16897-16908. PubMed ID: 34328153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations.
    Han W; Schulten K
    J Am Chem Soc; 2014 Sep; 136(35):12450-60. PubMed ID: 25134066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aβ40 and Aβ42 amyloid fibrils exhibit distinct molecular recycling properties.
    Sánchez L; Madurga S; Pukala T; Vilaseca M; López-Iglesias C; Robinson CV; Giralt E; Carulla N
    J Am Chem Soc; 2011 May; 133(17):6505-8. PubMed ID: 21486030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics.
    Rojas A; Maisuradze N; Kachlishvili K; Scheraga HA; Maisuradze GG
    ACS Chem Neurosci; 2017 Jan; 8(1):201-209. PubMed ID: 28095675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of Cortisol on the Fibril Formation Kinetics of Aβ42 Peptide: A Multi-Technical Approach.
    Nucara A; Ripanti F; Sennato S; Nisini G; De Santis E; Sefat M; Carbonaro M; Mango D; Minicozzi V; Carbone M
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Dynamics Simulations of Amyloid β-Peptide (1-42): Tetramer Formation and Membrane Interactions.
    Brown AM; Bevan DR
    Biophys J; 2016 Sep; 111(5):937-49. PubMed ID: 27602722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.