These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29884059)

  • 1. Binding energies of benzene on coinage metal surfaces: Equal stability on different metals.
    Maaß F; Jiang Y; Liu W; Tkatchenko A; Tegeder P
    J Chem Phys; 2018 Jun; 148(21):214703. PubMed ID: 29884059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Prediction of Molecular Adsorption: Structure and Binding of Benzene on Coinage Metals.
    Liu W; Maaß F; Willenbockel M; Bronner C; Schulze M; Soubatch S; Tautz FS; Tegeder P; Tkatchenko A
    Phys Rev Lett; 2015 Jul; 115(3):036104. PubMed ID: 26230807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling adsorption and reactions of organic molecules at metal surfaces.
    Liu W; Tkatchenko A; Scheffler M
    Acc Chem Res; 2014 Nov; 47(11):3369-77. PubMed ID: 24915492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of benzene on noble metal surfaces studied by density functional theory with Van der Waals correction.
    Toyoda K; Hamada I; Yanagisawa S; Morikawa Y
    J Nanosci Nanotechnol; 2011 Apr; 11(4):2836-43. PubMed ID: 21776640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the work function of stepped metal surfaces by adsorption of organic molecules.
    Jiang Y; Li J; Su G; Ferri N; Liu W; Tkatchenko A
    J Phys Condens Matter; 2017 May; 29(20):204001. PubMed ID: 28345536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic molecules on low-index coinage metal surfaces: Many-body dispersion effects.
    Jiang Y; Yang S; Li S; Liu W
    Sci Rep; 2016 Dec; 6():39529. PubMed ID: 28004793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of benzene on coinage metals: a theoretical analysis using wavefunction-based methods.
    Caputo R; Prascher BP; Staemmler V; Bagus PS; Wöll C
    J Phys Chem A; 2007 Dec; 111(49):12778-84. PubMed ID: 17999480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonadditivity of the Adsorption Energies of Linear Acenes on Au(111): Molecular Anisotropy and Many-Body Effects.
    Maass F; Ajdari M; Kabeer FC; Vogtland M; Tkatchenko A; Tegeder P
    J Phys Chem Lett; 2019 Mar; 10(5):1000-1004. PubMed ID: 30768273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2).
    Moses PG; Mortensen JJ; Lundqvist BI; Norskov JK
    J Chem Phys; 2009 Mar; 130(10):104709. PubMed ID: 19292551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular electronic level alignment at weakly coupled organic film/metal interfaces.
    Zhao J; Feng M; Dougherty DB; Sun H; Petek H
    ACS Nano; 2014 Oct; 8(10):10988-97. PubMed ID: 25303040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing adsorption mechanisms of pyridine on Cu, Ag, Au, and Pt(110) surfaces.
    Malone W; von der Heyde J; Kara A
    J Chem Phys; 2018 Dec; 149(21):214703. PubMed ID: 30525717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pauli Repulsion Versus van der Waals: Interaction of Indenocorannulene with a Cu(111) Surface.
    Zoppi L; Stöckl Q; Mairena A; Allemann O; Siegel JS; Baldridge KK; Ernst KH
    J Phys Chem B; 2018 Jan; 122(2):871-877. PubMed ID: 28906118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces.
    Chen DL; Al-Saidi WA; Johnson JK
    J Phys Condens Matter; 2012 Oct; 24(42):424211. PubMed ID: 23032730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems.
    Ruiz VG; Liu W; Zojer E; Scheffler M; Tkatchenko A
    Phys Rev Lett; 2012 Apr; 108(14):146103. PubMed ID: 22540809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles descriptors of CO chemisorption on Ni and Cu surfaces.
    Gameel KM; Sharafeldin IM; Allam NK
    Phys Chem Chem Phys; 2019 Jun; 21(21):11476-11487. PubMed ID: 31112167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselectivity of (321) chiral noble metal surfaces: a density functional theory study of lactate adsorption.
    Franke JH; Kosov DS
    J Chem Phys; 2013 Dec; 139(22):224709. PubMed ID: 24329084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of water and ethanol on noble and transition-metal substrates: a density functional investigation within van der Waals corrections.
    Freire RL; Kiejna A; Da Silva JL
    Phys Chem Chem Phys; 2016 Oct; 18(42):29526-29536. PubMed ID: 27747329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.
    Rodriguez JA; Illas F
    Phys Chem Chem Phys; 2012 Jan; 14(2):427-38. PubMed ID: 22108864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption energetics of azobenzenes on noble metal surfaces.
    Schulze M; Bronner C; Tegeder P
    J Phys Condens Matter; 2014 Sep; 26(35):355004. PubMed ID: 25077738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of van der Waals interaction in forming molecule-metal junctions: flat organic molecules on the Au(111) surface.
    Mura M; Gulans A; Thonhauser T; Kantorovich L
    Phys Chem Chem Phys; 2010 May; 12(18):4759-67. PubMed ID: 20428556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.