These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29884348)
21. Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. Niu X; Ding S; Wang W; Xu Y; Xu Y; Chen H; Chen X J Chromatogr A; 2016 Mar; 1436():109-17. PubMed ID: 26858115 [TBL] [Abstract][Full Text] [Related]
22. He N; Li Z; Hu C; Chen Z J Pharm Anal; 2022 Aug; 12(4):610-616. PubMed ID: 36105161 [TBL] [Abstract][Full Text] [Related]
23. Hydrogen-bonded organic frameworks as stationary phase for open-tubular capillary electrochromatography. Ning W; Xiang Y; Zhang L; Ye N Anal Chim Acta; 2024 Oct; 1326():343148. PubMed ID: 39260915 [TBL] [Abstract][Full Text] [Related]
24. Capillary electrochromatography using knitted aromatic polymer as the stationary phase for the separation of small biomolecules and drugs. Tang P; Chen Z Talanta; 2018 Feb; 178():650-655. PubMed ID: 29136876 [TBL] [Abstract][Full Text] [Related]
25. Preparation of β-cyclodextrin covalent organic framework-immobilized poly(glycidyl methacrylate) nanoparticle-coated open tubular capillary electrochromatography column for chiral separation. Huo H; Guan J; Huang Z; Long K; Zhang D; Shi S; Yan F J Sep Sci; 2023 Jul; 46(14):e2300117. PubMed ID: 37246276 [TBL] [Abstract][Full Text] [Related]
26. In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation. Pan C; Wang W; Zhang H; Xu L; Chen X J Chromatogr A; 2015 Apr; 1388():207-16. PubMed ID: 25725957 [TBL] [Abstract][Full Text] [Related]
27. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis. Sun W; Liu Y; Zhou W; Li Z; Chen Z Talanta; 2021 Aug; 230():122330. PubMed ID: 33934787 [TBL] [Abstract][Full Text] [Related]
28. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography. Li Q; Li Z; Fu Y; Clarot I; Boudier A; Chen Z Analyst; 2021 Oct; 146(21):6643-6649. PubMed ID: 34591047 [TBL] [Abstract][Full Text] [Related]
29. Open-tubular capillary electrochromatographic determination of ten sulfonamides in tap water and milk by a metal-organic framework-coated capillary column. Wang X; Ye N; Hu X; Liu Q; Li J; Peng L; Ma X Electrophoresis; 2018 Sep; 39(17):2236-2245. PubMed ID: 29799133 [TBL] [Abstract][Full Text] [Related]
30. Preparation and characterization of tentacle-type polymer stationary phase modified with graphene oxide for open-tubular capillary electrochromatography. Gao X; Mo R; Ji Y J Chromatogr A; 2015 Jun; 1400():19-26. PubMed ID: 25976128 [TBL] [Abstract][Full Text] [Related]
31. In situ growth of Zr-based metal-organic framework UiO-66-NH Tang P; Wang R; Chen Z Electrophoresis; 2018 Oct; 39(20):2619-2625. PubMed ID: 29660144 [TBL] [Abstract][Full Text] [Related]
32. Chiral-induced covalent organic framework as novel chiral stationary phase for chiral separation using open-tubular capillary electrochromatography. Yang M; Lv W; Chen Y; Wu X; Gao J; Xiao J; Chen H; Chen X J Chromatogr A; 2024 Nov; 1736():465334. PubMed ID: 39260153 [TBL] [Abstract][Full Text] [Related]
33. Monomer-mediated growth of β-cyclodextrin-based microporous organic network as stationary phase for capillary electrochromatography. Liao Z; Hu J; Li Z Anal Bioanal Chem; 2024 Nov; 416(28):6283-6290. PubMed ID: 39230749 [TBL] [Abstract][Full Text] [Related]
34. In situ one-pot synthesis of polydopamine/octadecylamine co-deposited coating in capillary for open-tubular capillary electrochromatography. Huang Y; Yi G; Ji B; Gao D; Bai Y; Liu Y; Wang L; Xia Z; Fu Q J Chromatogr A; 2020 Jan; 1610():460559. PubMed ID: 31564563 [TBL] [Abstract][Full Text] [Related]
35. An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography. Zhao L; Lv W; Niu X; Pan C; Chen H; Chen X J Chromatogr A; 2020 Mar; 1615():460722. PubMed ID: 31780079 [TBL] [Abstract][Full Text] [Related]
36. Fluorinated covalent-organic polymers as stationary phase for analysis of organic fluorides by open-tubular capillary electrochromatography. Li Q; Sun W; Li Z; Chen Z J Sep Sci; 2023 Aug; 46(16):e2300138. PubMed ID: 37269198 [TBL] [Abstract][Full Text] [Related]
37. l-Cysteine modified metal-organic framework as a chiral stationary phase for enantioseparation by capillary electrochromatography. Lidi G; Xingfang H; Shili Q; Hongtao C; Xuan Z; Bingbing W RSC Adv; 2022 Feb; 12(10):6063-6075. PubMed ID: 35424547 [TBL] [Abstract][Full Text] [Related]
38. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation. Li Z; Liao Z; Hu J; Chen Z J Chromatogr A; 2023 Apr; 1694():463905. PubMed ID: 36881971 [TBL] [Abstract][Full Text] [Related]
39. A lipase-based chiral stationary phase for direct chiral separation in capillary electrochromatography. Li Z; Li Q; Fu Y; Hu C; Liu Y; Li W; Chen Z Talanta; 2021 Oct; 233():122488. PubMed ID: 34215110 [TBL] [Abstract][Full Text] [Related]
40. A graphene oxide-molybdenum disulfide composite used as stationary phase for determination of sulfonamides in open-tubular capillary electrochromatography. Cai Z; Hu X; Zong R; Wu H; Jin X; Yin H; Huang C; Xiang Y; Ye N J Chromatogr A; 2020 Oct; 1629():461487. PubMed ID: 32823013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]