These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29884348)
41. Three-dimensional fluorinated covalent organic frameworks coated capillary for the separation of fluoroquinolones by capillary electrochromatography. Yin H; Zhen Z; Ning W; Zhang L; Xiang Y; Ye N J Chromatogr A; 2023 Sep; 1706():464234. PubMed ID: 37523908 [TBL] [Abstract][Full Text] [Related]
42. Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography. Zhang JH; Zhu PJ; Xie SM; Zi M; Yuan LM Anal Chim Acta; 2018 Jan; 999():169-175. PubMed ID: 29254569 [TBL] [Abstract][Full Text] [Related]
43. Fluorinated covalent organic frameworks as a stationary phase for separation of fluoroquinolones by capillary electrochromatography. Zong R; Yin H; Xiang Y; Zhang L; Ye N Mikrochim Acta; 2022 May; 189(6):237. PubMed ID: 35643990 [TBL] [Abstract][Full Text] [Related]
44. β-Cyclodextrin covalent organic framework-modified organic polymer monolith as a stationary phase for combined hydrophilic and hydrophobic aqueous capillary electrochromatographic separation of small molecules. Ma M; Du Y; Zhang L; Gan J; Yang J Mikrochim Acta; 2020 Jun; 187(7):385. PubMed ID: 32533434 [TBL] [Abstract][Full Text] [Related]
45. Open-tubular capillary electrochromatography using carboxylatopillar[5]arene as stationary phase. Kong D; Chen Z Electrophoresis; 2018 Jan; 39(2):363-369. PubMed ID: 28891068 [TBL] [Abstract][Full Text] [Related]
46. In situ growth of imine-based covalent organic framework as stationary phase for open-tubular capillary electrochromatographic separation. Niu X; Qi S; Sun J; Zhu A; Wang F; Wu M; Lv W; Chen H J Sep Sci; 2024 Jan; 47(2):e2300686. PubMed ID: 38286732 [TBL] [Abstract][Full Text] [Related]
47. The characteristics of open-tubular capillary electrochromatography columns with series/mixed stationary phases constructed with magnetic nanoparticle coating. Zhu Y; Zhang L; Qian J; Zhang W Talanta; 2013 Jan; 104():173-9. PubMed ID: 23597906 [TBL] [Abstract][Full Text] [Related]
48. Open-tubular Capillary Electrochromatography with Janus Structured Au-Fe Liu Y; Li J; Wang Y; Yan C Anal Sci; 2020 Apr; 36(4):413-418. PubMed ID: 31656248 [TBL] [Abstract][Full Text] [Related]
49. Polydopamine-assisted immobilization of a zinc(II)-derived metal-organic cage as a stationary phase for open-tubular capillary electrochromatography. Li Z; Mao Z; Chen Z Mikrochim Acta; 2019 Jun; 186(7):449. PubMed ID: 31197494 [TBL] [Abstract][Full Text] [Related]
50. Recent developments in open tubular capillary electrochromatography from 2016 to 2017. Tarongoy FM; Haddad PR; Quirino JP Electrophoresis; 2018 Jan; 39(1):34-52. PubMed ID: 28815745 [TBL] [Abstract][Full Text] [Related]
51. Capillary coated with graphene and graphene oxide sheets as stationary phase for capillary electrochromatography and capillary liquid chromatography. Qu Q; Gu C; Hu X Anal Chem; 2012 Oct; 84(20):8880-90. PubMed ID: 22991893 [TBL] [Abstract][Full Text] [Related]
52. Preparation and characterization of a new open-tubular capillary column for enantioseparation by capillary electrochromatography. Li Y; Tang Y; Qin S; Li X; Dai Q; Gao L Chirality; 2019 Apr; 31(4):283-292. PubMed ID: 30693982 [TBL] [Abstract][Full Text] [Related]
53. Growth of two-layer copolymer as the stationary phase with very high separation efficiency for separating peptides in capillary electrochromatography. Sun G; Tang W; Lu Y; Row KH Electrophoresis; 2021 Oct; 42(20):2087-2093. PubMed ID: 34411326 [TBL] [Abstract][Full Text] [Related]
54. One-pot synthesis of a novel chiral Zr-based metal-organic framework for capillary electrochromatographic enantioseparation. Gao L; Hu X; Qin S; Chu H; Tang Y; Li X; Wang B Electrophoresis; 2022 Jun; 43(11):1161-1173. PubMed ID: 35312084 [TBL] [Abstract][Full Text] [Related]
55. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. Bao T; Zhang J; Zhang W; Chen Z J Chromatogr A; 2015 Feb; 1381():239-46. PubMed ID: 25604273 [TBL] [Abstract][Full Text] [Related]
56. Chiral metal-organic framework used as stationary phases for capillary electrochromatography. Fei ZX; Zhang M; Zhang JH; Yuan LM Anal Chim Acta; 2014 Jun; 830():49-55. PubMed ID: 24856511 [TBL] [Abstract][Full Text] [Related]
57. Advances in sol-gel based columns for capillary electrochromatography: sol-gel open-tubular columns. Malik A Electrophoresis; 2002 Nov; 23(22-23):3973-92. PubMed ID: 12481288 [TBL] [Abstract][Full Text] [Related]
58. MIL-53-based homochiral metal-organic framework as a stationary phase for open-tubular capillary electrochromatography. Sun X; Niu B; Zhang Q; Chen Q J Pharm Anal; 2022 Jun; 12(3):509-516. PubMed ID: 35811623 [TBL] [Abstract][Full Text] [Related]
59. Fluoro-functionalized stationary phases for electrochromatographic separation of organic fluorides. Li Z; Mao Z; Hu C; Li Q; Chen Z J Chromatogr A; 2020 Aug; 1625():461269. PubMed ID: 32709321 [TBL] [Abstract][Full Text] [Related]
60. Porous layer open-tubular column with styrene and itaconic acid-copolymerized polymer as stationary phase for capillary electrochromatography-mass spectrometry. Zhou W; Yu X; Liu Y; Sun W; Chen Z Electrophoresis; 2021 Dec; 42(24):2664-2671. PubMed ID: 34499755 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]