These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29884885)
1. Angiogenesis in human brain tumors: screening of drug response through a patient-specific cell platform for personalized therapy. Guarnaccia L; Navone SE; Trombetta E; Cordiglieri C; Cherubini A; Crisà FM; Rampini P; Miozzo M; Fontana L; Caroli M; Locatelli M; Riboni L; Campanella R; Marfia G Sci Rep; 2018 Jun; 8(1):8748. PubMed ID: 29884885 [TBL] [Abstract][Full Text] [Related]
2. Aspirin Affects Tumor Angiogenesis and Sensitizes Human Glioblastoma Endothelial Cells to Temozolomide, Bevacizumab, and Sunitinib, Impairing Vascular Endothelial Growth Factor-Related Signaling. Navone SE; Guarnaccia L; Cordiglieri C; Crisà FM; Caroli M; Locatelli M; Schisano L; Rampini P; Miozzo M; La Verde N; Riboni L; Campanella R; Marfia G World Neurosurg; 2018 Dec; 120():e380-e391. PubMed ID: 30144594 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of tumor-associated endothelial cells derived from glioblastoma multiforme. Charalambous C; Chen TC; Hofman FM Neurosurg Focus; 2006 Apr; 20(4):E22. PubMed ID: 16709028 [TBL] [Abstract][Full Text] [Related]
4. The evolving role of antiangiogenic therapies in glioblastoma multiforme: current clinical significance and future potential. Anthony C; Mladkova-Suchy N; Adamson DC Expert Opin Investig Drugs; 2019 Sep; 28(9):787-797. PubMed ID: 31356114 [No Abstract] [Full Text] [Related]
5. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma. Mao XG; Wang C; Liu DY; Zhang X; Wang L; Yan M; Zhang W; Zhu J; Li ZC; Mi C; Tian JY; Hou GD; Miao SY; Song ZX; Li JC; Xue XY Oncotarget; 2016 Jul; 7(30):47808-47820. PubMed ID: 27329597 [TBL] [Abstract][Full Text] [Related]
6. Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma. Ahir BK; Engelhard HH; Lakka SS Mol Neurobiol; 2020 May; 57(5):2461-2478. PubMed ID: 32152825 [TBL] [Abstract][Full Text] [Related]
8. Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. de Boüard S; Herlin P; Christensen JG; Lemoisson E; Gauduchon P; Raymond E; Guillamo JS Neuro Oncol; 2007 Oct; 9(4):412-23. PubMed ID: 17622648 [TBL] [Abstract][Full Text] [Related]
9. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy. Castro BA; Flanigan P; Jahangiri A; Hoffman D; Chen W; Kuang R; De Lay M; Yagnik G; Wagner JR; Mascharak S; Sidorov M; Shrivastav S; Kohanbash G; Okada H; Aghi MK Oncogene; 2017 Jun; 36(26):3749-3759. PubMed ID: 28218903 [TBL] [Abstract][Full Text] [Related]
10. Antiangiogenic therapy for high-grade glioma. Khasraw M; Ameratunga MS; Grant R; Wheeler H; Pavlakis N Cochrane Database Syst Rev; 2014 Sep; (9):CD008218. PubMed ID: 25242542 [TBL] [Abstract][Full Text] [Related]
11. Efficient inhibition of in vivo human malignant glioma growth and angiogenesis by interferon-beta treatment at early stage of tumor development. Hong YK; Chung DS; Joe YA; Yang YJ; Kim KM; Park YS; Yung WK; Kang JK Clin Cancer Res; 2000 Aug; 6(8):3354-60. PubMed ID: 10955823 [TBL] [Abstract][Full Text] [Related]
12. Bevacizumab-based therapy in relapsed glioblastoma: rationale and clinical experience to date. Chinot OL Expert Rev Anticancer Ther; 2012 Nov; 12(11):1413-27. PubMed ID: 23249106 [TBL] [Abstract][Full Text] [Related]
13. Antiangiogenic Targets for Glioblastoma Therapy from a Pre-Clinical Approach, Using Nanoformulations. Nery de Albuquerque Rego G; da Hora Alves A; Penteado Nucci M; Bustamante Mamani J; Anselmo de Oliveira F; Gamarra LF Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32599834 [TBL] [Abstract][Full Text] [Related]
14. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. Huang M; Liu T; Ma P; Mitteer RA; Zhang Z; Kim HJ; Yeo E; Zhang D; Cai P; Li C; Zhang L; Zhao B; Roccograndi L; O'Rourke DM; Dahmane N; Gong Y; Koumenis C; Fan Y J Clin Invest; 2016 May; 126(5):1801-14. PubMed ID: 27043280 [TBL] [Abstract][Full Text] [Related]
15. Angiogenesis in glioblastoma multiforme: navigating the maze. Linkous AG; Yazlovitskaya EM Anticancer Agents Med Chem; 2011 Oct; 11(8):712-8. PubMed ID: 21707499 [TBL] [Abstract][Full Text] [Related]
16. Anti-Angiogenics: Their Role in the Treatment of Glioblastoma. Winkler F; Osswald M; Wick W Oncol Res Treat; 2018; 41(4):181-186. PubMed ID: 29562225 [TBL] [Abstract][Full Text] [Related]
17. Vascular heterogeneity and targeting: the role of YKL-40 in glioblastoma vascularization. Shao R; Taylor SL; Oh DS; Schwartz LM Oncotarget; 2015 Dec; 6(38):40507-18. PubMed ID: 26439689 [TBL] [Abstract][Full Text] [Related]
18. Platelets from glioblastoma patients promote angiogenesis of tumor endothelial cells and exhibit increased VEGF content and release. Di Vito C; Navone SE; Marfia G; Abdel Hadi L; Mancuso ME; Pecci A; Crisà FM; Berno V; Rampini P; Campanella R; Riboni L Platelets; 2017 Sep; 28(6):585-594. PubMed ID: 27897101 [TBL] [Abstract][Full Text] [Related]
19. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. Sousa F; Dhaliwal HK; Gattacceca F; Sarmento B; Amiji MM J Control Release; 2019 Sep; 309():37-47. PubMed ID: 31344424 [TBL] [Abstract][Full Text] [Related]
20. A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis. Dorrell MI; Kast-Woelbern HR; Botts RT; Bravo SA; Tremblay JR; Giles S; Wada JF; Alexander M; Garcia E; Villegas G; Booth CB; Purington KJ; Everett HM; Siles EN; Wheelock M; Silva JA; Fortin BM; Lowey CA; Hale AL; Kurz TL; Rusing JC; Goral DM; Thompson P; Johnson AM; Elson DJ; Tadros R; Gillette CE; Coopwood C; Rausch AL; Snowbarger JM PLoS One; 2021; 16(6):e0252233. PubMed ID: 34077449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]