BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29884895)

  • 1. Simple, low-cost fabrication of acrylic based droplet microfluidics and its use to generate DNA-coated particles.
    Islam MM; Loewen A; Allen PB
    Sci Rep; 2018 Jun; 8(1):8763. PubMed ID: 29884895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional Droplet Microfluidic Platform for Rapid Immobilization of Oligonucleotides on Semiconductor Quantum Dots.
    Nguyen TH; Sedighi A; Krull UJ; Ren CL
    ACS Sens; 2020 Mar; 5(3):746-753. PubMed ID: 32115948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing.
    Kamperman T; Teixeira LM; Salehi SS; Kerckhofs G; Guyot Y; Geven M; Geris L; Grijpma D; Blanquer S; Leijten J
    Lab Chip; 2020 Feb; 20(3):490-495. PubMed ID: 31841123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid diagnosis of SARS-CoV-2 using DNA hydrogel formation on microfluidic pores.
    Kim HS; Abbas N; Shin S
    Biosens Bioelectron; 2021 Apr; 177():113005. PubMed ID: 33486135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System.
    Khan AH; Smith NM; Tullier MP; Roberts BS; Englert D; Pojman JA; Melvin AT
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26735-26747. PubMed ID: 34081856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application.
    Kwon GH; Choi YY; Park JY; Woo DH; Lee KB; Kim JH; Lee SH
    Lab Chip; 2010 Jun; 10(12):1604-10. PubMed ID: 20376390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization.
    Coelho BJ; Neto JP; Sieira B; Moura AT; Fortunato E; Martins R; Baptista PV; Igreja R; Águas H
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.
    Chen M; Aluunmani R; Bolognesi G; Vladisavljević GT
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment and Validation of an Integrated Microfluidic Step Emulsification Chip Supporting Droplet Digital Nucleic Acid Analysis.
    Luo G; Zhang Y; Wang S; Lv X; Yang T; Wang J
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation.
    Gao K; Liu J; Fan Y; Zhang Y
    Biomed Microdevices; 2019 Aug; 21(4):83. PubMed ID: 31418064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamb wave-based molecular diagnosis using DNA hydrogel formation by rolling circle amplification (RCA) process.
    Nam J; Jang WS; Kim J; Lee H; Lim CS
    Biosens Bioelectron; 2019 Oct; 142():111496. PubMed ID: 31302395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable visual quantitative detection of aflatoxin B1 using a target-responsive hydrogel and a distance-readout microfluidic chip.
    Ma Y; Mao Y; Huang D; He Z; Yan J; Tian T; Shi Y; Song Y; Li X; Zhu Z; Zhou L; Yang CJ
    Lab Chip; 2016 Aug; 16(16):3097-104. PubMed ID: 27302553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Generation of Aqueous-Droplet-Filled Hydrogel Fibers as Organoid Carriers Using an All-in-Water Microfluidic System.
    Wang H; Liu H; Zhang X; Wang Y; Zhao M; Chen W; Qin J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3199-3208. PubMed ID: 33405509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.
    Mazutis L; Vasiliauskas R; Weitz DA
    Macromol Biosci; 2015 Dec; 15(12):1641-6. PubMed ID: 26198619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology.
    Orabi M; Lo JF
    Gels; 2023 Oct; 9(10):. PubMed ID: 37888363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
    Ji XH; Cheng W; Guo F; Liu W; Guo SS; He ZK; Zhao XZ
    Lab Chip; 2011 Aug; 11(15):2561-8. PubMed ID: 21687836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation.
    Jiang Z; Shaha R; McBride R; Jiang K; Tang M; Xu B; Goroncy AK; Frick C; Oakey J
    Biofabrication; 2020 Apr; 12(3):035006. PubMed ID: 32160605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite Sensor Particles for Tuned SERS Sensing: Microfluidic Synthesis, Properties and Applications.
    Visaveliya N; Lenke S; Köhler JM
    ACS Appl Mater Interfaces; 2015 May; 7(20):10742-54. PubMed ID: 25939496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.