These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm. Solomon J; Lyu P; Marin D; Samei E Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661 [TBL] [Abstract][Full Text] [Related]
5. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: A phantom study. Franck C; Zhang G; Deak P; Zanca F Phys Med; 2021 Jan; 81():86-93. PubMed ID: 33445125 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology. Samei E; Richard S Med Phys; 2015 Jan; 42(1):314-23. PubMed ID: 25563271 [TBL] [Abstract][Full Text] [Related]
7. Quantitative comparison of noise texture across CT scanners from different manufacturers. Solomon JB; Christianson O; Samei E Med Phys; 2012 Oct; 39(10):6048-55. PubMed ID: 23039643 [TBL] [Abstract][Full Text] [Related]
8. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE. Solomon J; Samei E Med Phys; 2014 Sep; 41(9):091908. PubMed ID: 25186395 [TBL] [Abstract][Full Text] [Related]
9. CT automated exposure control using a generalized detectability index. Khobragade P; Rupcich F; Fan J; Crotty DJ; Kulkarni NM; O'Connor SD; Foley WD; Schmidt TG Med Phys; 2019 Jan; 46(1):140-151. PubMed ID: 30417403 [TBL] [Abstract][Full Text] [Related]
10. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective. Brady SL; Yee BS; Kaufman RA Med Phys; 2012 Sep; 39(9):5520-31. PubMed ID: 22957619 [TBL] [Abstract][Full Text] [Related]
11. CT image quality evaluation in the age of deep learning: trade-off between functionality and fidelity. Yang K; Cao J; Pisuchpen N; Kambadakone A; Gupta R; Marschall T; Li X; Liu B Eur Radiol; 2023 Apr; 33(4):2439-2449. PubMed ID: 36350391 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a commercial hybrid iterative and model-based reconstruction algorithm in radiation oncology. Price RG; Vance S; Cattaneo R; Schultz L; Elshaikh MA; Chetty IJ; Glide-Hurst CK Med Phys; 2014 Aug; 41(8):081907. PubMed ID: 25086538 [TBL] [Abstract][Full Text] [Related]
13. A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential. Euler A; Solomon J; Marin D; Nelson RC; Samei E AJR Am J Roentgenol; 2018 Jun; 210(6):1301-1308. PubMed ID: 29702019 [TBL] [Abstract][Full Text] [Related]
14. Statistical model based iterative reconstruction (MBIR) in clinical CT systems: experimental assessment of noise performance. Li K; Tang J; Chen GH Med Phys; 2014 Apr; 41(4):041906. PubMed ID: 24694137 [TBL] [Abstract][Full Text] [Related]
15. Comparative assessment of noise properties for two deep learning CT image reconstruction techniques and filtered back projection. Kawashima H; Ichikawa K; Takata T; Seto I Med Phys; 2022 Oct; 49(10):6359-6367. PubMed ID: 36047991 [TBL] [Abstract][Full Text] [Related]
16. A method for characterizing and matching CT image quality across CT scanners from different manufacturers. Winslow J; Zhang Y; Samei E Med Phys; 2017 Nov; 44(11):5705-5717. PubMed ID: 28865170 [TBL] [Abstract][Full Text] [Related]
17. Technical Note: Impact on central frequency and noise magnitude ratios by advanced CT image reconstruction techniques. Pan T; Hasegawa A; Luo D; Wu CC; Vikram R Med Phys; 2020 Feb; 47(2):480-487. PubMed ID: 31778233 [TBL] [Abstract][Full Text] [Related]
18. A qualitative and quantitative analysis of radiation dose and image quality of computed tomography images using adaptive statistical iterative reconstruction. Hussain FA; Mail N; Shamy AM; Suliman A; Saoudi A J Appl Clin Med Phys; 2016 May; 17(3):419-432. PubMed ID: 27167261 [TBL] [Abstract][Full Text] [Related]
19. A quantitative comparison of noise reduction across five commercial (hybrid and model-based) iterative reconstruction techniques: an anthropomorphic phantom study. Patino M; Fuentes JM; Hayano K; Kambadakone AR; Uyeda JW; Sahani DV AJR Am J Roentgenol; 2015 Feb; 204(2):W176-83. PubMed ID: 25615778 [TBL] [Abstract][Full Text] [Related]
20. Deep-learning image reconstruction for image quality evaluation and accurate bone mineral density measurement on quantitative CT: A phantom-patient study. Li Y; Jiang Y; Yu X; Ren B; Wang C; Chen S; Ma D; Su D; Liu H; Ren X; Yang X; Gao J; Wu Y Front Endocrinol (Lausanne); 2022; 13():884306. PubMed ID: 36034436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]