These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 29885062)
21. Technical Note: Scanner dependence of adaptive statistical iterative reconstruction with 3D noise power spectrum central frequency and noise magnitude ratios. Hasegawa A; Ishihara T; Allan Thomas M; Pan T Med Phys; 2021 Sep; 48(9):4993-5003. PubMed ID: 34287936 [TBL] [Abstract][Full Text] [Related]
22. New adaptive statistical iterative reconstruction ASiR-V: Assessment of noise performance in comparison to ASiR. De Marco P; Origgi D J Appl Clin Med Phys; 2018 Mar; 19(2):275-286. PubMed ID: 29363260 [TBL] [Abstract][Full Text] [Related]
23. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study. Racine D; Becce F; Viry A; Monnin P; Thomsen B; Verdun FR; Rotzinger DC Phys Med; 2020 Aug; 76():28-37. PubMed ID: 32574999 [TBL] [Abstract][Full Text] [Related]
24. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction. Barca P; Giannelli M; Fantacci ME; Caramella D Australas Phys Eng Sci Med; 2018 Jun; 41(2):463-473. PubMed ID: 29737491 [TBL] [Abstract][Full Text] [Related]
25. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Singh S; Kalra MK; Gilman MD; Hsieh J; Pien HH; Digumarthy SR; Shepard JA Radiology; 2011 May; 259(2):565-73. PubMed ID: 21386048 [TBL] [Abstract][Full Text] [Related]
26. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen. Thor D; Titternes R; Poludniowski G Med Phys; 2023 May; 50(5):2775-2786. PubMed ID: 36774193 [TBL] [Abstract][Full Text] [Related]
27. Deep learning image reconstruction algorithms in low-dose radiation abdominal computed tomography: assessment of image quality and lesion diagnostic confidence. Yang C; Wang W; Cui D; Zhang J; Liu L; Wang Y; Li W Quant Imaging Med Surg; 2023 May; 13(5):3161-3173. PubMed ID: 37179954 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of image quality and radiation dose by adaptive statistical iterative reconstruction technique level for chest CT examination. Hong SS; Lee JW; Seo JB; Jung JE; Choi J; Kweon DC Radiat Prot Dosimetry; 2013 Dec; 157(2):163-71. PubMed ID: 23704358 [TBL] [Abstract][Full Text] [Related]
29. Development, validation, and application of a generic image-based noise addition method for simulating reduced dose computed tomography images. Alsaihati N; Solomon J; McCrum E; Samei E Med Phys; 2024 Oct; ():. PubMed ID: 39387993 [TBL] [Abstract][Full Text] [Related]
30. Development and validation of an automated methodology to assess perceptual Smith TB; Abadi E; Sauer TJ; Fu W; Solomon J; Samei E J Med Imaging (Bellingham); 2021 Sep; 8(5):052113. PubMed ID: 34712744 [No Abstract] [Full Text] [Related]
31. Pixel-wise estimation of noise statistics on iterative CT reconstruction from a single scan. Wang T; Zhu L Med Phys; 2017 Jul; 44(7):3525-3533. PubMed ID: 28444799 [TBL] [Abstract][Full Text] [Related]
32. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. Singh S; Kalra MK; Do S; Thibault JB; Pien H; O'Connor OJ; Blake MA J Comput Assist Tomogr; 2012; 36(3):347-53. PubMed ID: 22592622 [TBL] [Abstract][Full Text] [Related]
33. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v. Lim K; Kwon H; Cho J; Oh J; Yoon S; Kang M; Ha D; Lee J; Kang E J Comput Assist Tomogr; 2015; 39(3):443-8. PubMed ID: 25654782 [TBL] [Abstract][Full Text] [Related]
34. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT. Son W; Kim M; Hwang JY; Kim YW; Park C; Choo KS; Kim TU; Jang JY Korean J Radiol; 2022 Jul; 23(7):752-762. PubMed ID: 35695313 [TBL] [Abstract][Full Text] [Related]
35. Ultra-low-dose CT of the lung: effect of iterative reconstruction techniques on image quality. Yanagawa M; Gyobu T; Leung AN; Kawai M; Kawata Y; Sumikawa H; Honda O; Tomiyama N Acad Radiol; 2014 Jun; 21(6):695-703. PubMed ID: 24713541 [TBL] [Abstract][Full Text] [Related]
37. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Friedman SN; Fung GS; Siewerdsen JH; Tsui BM Med Phys; 2013 May; 40(5):051907. PubMed ID: 23635277 [TBL] [Abstract][Full Text] [Related]
38. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study. Greffier J; Si-Mohamed S; Frandon J; Loisy M; de Oliveira F; Beregi JP; Dabli D Med Phys; 2022 Aug; 49(8):5052-5063. PubMed ID: 35696272 [TBL] [Abstract][Full Text] [Related]