BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29885101)

  • 1. Accurate modeling of temporal correlations in rapidly sampled fMRI time series.
    Corbin N; Todd N; Friston KJ; Callaghan MF
    Hum Brain Mapp; 2018 Oct; 39(10):3884-3897. PubMed ID: 29885101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serial correlations in single-subject fMRI with sub-second TR.
    Bollmann S; Puckett AM; Cunnington R; Barth M
    Neuroimage; 2018 Feb; 166():152-166. PubMed ID: 29066396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the analysis of rapidly sampled fMRI data.
    Chen JE; Polimeni JR; Bollmann S; Glover GH
    Neuroimage; 2019 Mar; 188():807-820. PubMed ID: 30735828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive evaluation of increasing temporal resolution with multiband-accelerated protocols and effects on statistical outcome measures in fMRI.
    Demetriou L; Kowalczyk OS; Tyson G; Bello T; Newbould RD; Wall MB
    Neuroimage; 2018 Aug; 176():404-416. PubMed ID: 29738911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction.
    Petrov AY; Herbst M; Andrew Stenger V
    Neuroimage; 2017 Aug; 157():660-674. PubMed ID: 28684333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data.
    Blazejewska AI; Fischl B; Wald LL; Polimeni JR
    Neuroimage; 2019 Apr; 189():601-614. PubMed ID: 30690157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based physiological noise removal in fast fMRI.
    Agrawal U; Brown EN; Lewis LD
    Neuroimage; 2020 Jan; 205():116231. PubMed ID: 31589991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration.
    Hoinkiss DC; Erhard P; Breutigam NJ; von Samson-Himmelstjerna F; Günther M; Porter DA
    Neuroimage; 2019 Oct; 200():159-173. PubMed ID: 31226496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
    Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM
    Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacting the effect of fMRI noise through hardware and acquisition choices - Implications for controlling false positive rates.
    Wald LL; Polimeni JR
    Neuroimage; 2017 Jul; 154():15-22. PubMed ID: 28039092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse transformed encoding models - a solution to the problem of correlated trial-by-trial parameter estimates in fMRI decoding.
    Soch J; Allefeld C; Haynes JD
    Neuroimage; 2020 Apr; 209():116449. PubMed ID: 31866165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved model of motion-related signal changes in fMRI.
    Patriat R; Reynolds RC; Birn RM
    Neuroimage; 2017 Jan; 144(Pt A):74-82. PubMed ID: 27570108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially informed voxelwise modeling for naturalistic fMRI experiments.
    Çelik E; Dar SUH; Yılmaz Ö; Keleş Ü; Çukur T
    Neuroimage; 2019 Feb; 186():741-757. PubMed ID: 30502444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the sensitivity of cluster-based statistics for functional magnetic resonance imaging data.
    Geerligs L; Maris E
    Hum Brain Mapp; 2021 Jun; 42(9):2746-2765. PubMed ID: 33724597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temporal resolution and serial autocorrelations in event-related functional MRI.
    Sahib AK; Mathiak K; Erb M; Elshahabi A; Klamer S; Scheffler K; Focke NK; Ethofer T
    Magn Reson Med; 2016 Dec; 76(6):1805-1813. PubMed ID: 26749161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of physiological noise correction on fMRI at 7 T.
    Hutton C; Josephs O; Stadler J; Featherstone E; Reid A; Speck O; Bernarding J; Weiskopf N
    Neuroimage; 2011 Jul; 57(1):101-112. PubMed ID: 21515386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.
    Liu J; Duffy BA; Bernal-Casas D; Fang Z; Lee JH
    Neuroimage; 2017 Feb; 147():390-408. PubMed ID: 27993672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution.
    Yoo PE; John SE; Farquharson S; Cleary JO; Wong YT; Ng A; Mulcahy CB; Grayden DB; Ordidge RJ; Opie NL; O'Brien TJ; Oxley TJ; Moffat BA
    Neuroimage; 2018 Jan; 164():214-229. PubMed ID: 28286317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.