These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 29885211)
1. The role of two-component systems in the physiology of Mycobacterium tuberculosis. Kundu M IUBMB Life; 2018 Aug; 70(8):710-717. PubMed ID: 29885211 [TBL] [Abstract][Full Text] [Related]
2. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
3. [Signal transduction and drug resistance in Mycobacterium tuberculosis--A review]. Wang S; Feng Y; Zhang Z Wei Sheng Wu Xue Bao; 2015 Aug; 55(8):971-6. PubMed ID: 26665593 [TBL] [Abstract][Full Text] [Related]
4. Mycobacterium tuberculosis proteases and implications for new antibiotics against tuberculosis. Zhao QJ; Xie JP Crit Rev Eukaryot Gene Expr; 2011; 21(4):347-61. PubMed ID: 22181704 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in the research of heterocyclic compounds as antitubercular agents. Yan M; Ma S ChemMedChem; 2012 Dec; 7(12):2063-75. PubMed ID: 23042656 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis. Zhou L; Yang L; Zeng X; Danzheng J; Zheng Q; Liu J; Liu F; Xin Y; Cheng X; Su M; Ma Y; Hao X Int J Antimicrob Agents; 2015 Jul; 46(1):73-81. PubMed ID: 25937537 [TBL] [Abstract][Full Text] [Related]
7. Targeting type VII/ESX secretion systems for development of novel antimycobacterial drugs. Bottai D; Serafini A; Cascioferro A; Brosch R; Manganelli R Curr Pharm Des; 2014; 20(27):4346-56. PubMed ID: 24245757 [TBL] [Abstract][Full Text] [Related]
8. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Marimani M; Ahmad A; Duse A Tuberculosis (Edinb); 2018 Dec; 113():200-214. PubMed ID: 30514504 [TBL] [Abstract][Full Text] [Related]
9. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. Arora G; Bothra A; Prosser G; Arora K; Sajid A FEBS J; 2021 Jun; 288(11):3375-3393. PubMed ID: 33021056 [TBL] [Abstract][Full Text] [Related]
10. Targeting multiple response regulators of Mycobacterium tuberculosis augments the host immune response to infection. Banerjee SK; Kumar M; Alokam R; Sharma AK; Chatterjee A; Kumar R; Sahu SK; Jana K; Singh R; Yogeeswari P; Sriram D; Basu J; Kundu M Sci Rep; 2016 May; 6():25851. PubMed ID: 27181265 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis. Zhang YJ; Li XJ; Mi KX Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933 [TBL] [Abstract][Full Text] [Related]
12. Mycobacterium tuberculosis cytochrome P450 enzymes: a cohort of novel TB drug targets. Hudson SA; McLean KJ; Munro AW; Abell C Biochem Soc Trans; 2012 Jun; 40(3):573-9. PubMed ID: 22616869 [TBL] [Abstract][Full Text] [Related]
13. Targeting tuberculosis: a glimpse of promising drug targets. Arora N; Banerjee AK Mini Rev Med Chem; 2012 Mar; 12(3):187-201. PubMed ID: 22356190 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal whole genome analysis of pre and post drug treatment Mycobacterium tuberculosis isolates reveals progressive steps to drug resistance. Datta G; Nieto LM; Davidson RM; Mehaffy C; Pederson C; Dobos KM; Strong M Tuberculosis (Edinb); 2016 May; 98():50-5. PubMed ID: 27156618 [TBL] [Abstract][Full Text] [Related]
15. Pathogenic Gene Screening of Mycobacterium tuberculosis by Literature Data Mining and Information Pathway Enrichment Analysis. Xu G; Wen S; Pan Y; Zhang N; Wang Y Clin Lab; 2018 May; 64(5):677-686. PubMed ID: 29739036 [TBL] [Abstract][Full Text] [Related]
16. Comparative genomics of Mycobacterium tuberculosis drug efflux pumps and their transcriptional regulators. Liu H; Xie J Crit Rev Eukaryot Gene Expr; 2014; 24(2):163-80. PubMed ID: 24940769 [TBL] [Abstract][Full Text] [Related]
17. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Le Chevalier F; Cascioferro A; Majlessi L; Herrmann JL; Brosch R Future Microbiol; 2014; 9(8):969-85. PubMed ID: 25302954 [TBL] [Abstract][Full Text] [Related]
18. Mycobacterium sulfur metabolism and implications for novel drug targets. Zeng L; Shi T; Zhao Q; Xie J Cell Biochem Biophys; 2013 Mar; 65(2):77-83. PubMed ID: 23054909 [TBL] [Abstract][Full Text] [Related]
19. A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Rickman L; Saldanha JW; Hunt DM; Hoar DN; Colston MJ; Millar JB; Buxton RS Biochem Biophys Res Commun; 2004 Jan; 314(1):259-67. PubMed ID: 14715274 [TBL] [Abstract][Full Text] [Related]
20. PhoP, a key player in Mycobacterium tuberculosis virulence. Ryndak M; Wang S; Smith I Trends Microbiol; 2008 Nov; 16(11):528-34. PubMed ID: 18835713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]