These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 29885273)
21. Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole. Kinsman-Costello LE; Sheik CS; Sheldon ND; Allen Burton G; Costello DM; Marcus D; Uyl PA; Dick GJ Geobiology; 2017 Mar; 15(2):225-239. PubMed ID: 27671809 [TBL] [Abstract][Full Text] [Related]
22. Defining the functional potential and active community members of a sediment microbial community in a high-arctic hypersaline subzero spring. Lay CY; Mykytczuk NC; Yergeau É; Lamarche-Gagnon G; Greer CW; Whyte LG Appl Environ Microbiol; 2013 Jun; 79(12):3637-48. PubMed ID: 23563939 [TBL] [Abstract][Full Text] [Related]
23. Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range. Jew AD; Behrens SF; Rytuba JJ; Kappler A; Spormann AM; Brown GE Geobiology; 2014 Jan; 12(1):20-33. PubMed ID: 24224806 [TBL] [Abstract][Full Text] [Related]
24. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813 [TBL] [Abstract][Full Text] [Related]
25. Microbial Diversity and Sulfur Cycling in an Early Earth Analogue: From Ancient Novelty to Modern Commonality. Hahn CR; Farag IF; Murphy CL; Podar M; Elshahed MS; Youssef NH mBio; 2022 Apr; 13(2):e0001622. PubMed ID: 35258328 [TBL] [Abstract][Full Text] [Related]
26. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Reysenbach AL; Liu Y; Banta AB; Beveridge TJ; Kirshtein JD; Schouten S; Tivey MK; Von Damm KL; Voytek MA Nature; 2006 Jul; 442(7101):444-7. PubMed ID: 16871216 [TBL] [Abstract][Full Text] [Related]
27. Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments. Palermo C; Dittrich M Environ Microbiol Rep; 2016 Apr; 8(2):179-86. PubMed ID: 26636960 [TBL] [Abstract][Full Text] [Related]
28. The transition to a sulphidic ocean approximately 1.84 billion years ago. Poulton SW; Fralick PW; Canfield DE Nature; 2004 Sep; 431(7005):173-7. PubMed ID: 15356628 [TBL] [Abstract][Full Text] [Related]
29. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Kobayashi T; Li YY; Kubota K; Harada H; Maeda T; Yu HQ Appl Microbiol Biotechnol; 2012 Jan; 93(2):847-57. PubMed ID: 21735263 [TBL] [Abstract][Full Text] [Related]
30. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria. Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192 [TBL] [Abstract][Full Text] [Related]
31. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions. Field EK; Kato S; Findlay AJ; MacDonald DJ; Chiu BK; Luther GW; Chan CS Geobiology; 2016 Sep; 14(5):499-508. PubMed ID: 27384464 [TBL] [Abstract][Full Text] [Related]
32. Products of the iron cycle on the early Earth. Tosca NJ; Jiang CZ; Rasmussen B; Muhling J Free Radic Biol Med; 2019 Aug; 140():138-153. PubMed ID: 31071438 [TBL] [Abstract][Full Text] [Related]
33. Microbial community of aerobic granules for ammonium and sulphide removal in a sequencing batch reactor. Su C; Zhu L; Zhang C; Qi X; Guo Y; Gao R Biotechnol Lett; 2012 May; 34(5):883-8. PubMed ID: 22286180 [TBL] [Abstract][Full Text] [Related]
34. Widespread iron-rich conditions in the mid-Proterozoic ocean. Planavsky NJ; McGoldrick P; Scott CT; Li C; Reinhard CT; Kelly AE; Chu X; Bekker A; Love GD; Lyons TW Nature; 2011 Sep; 477(7365):448-51. PubMed ID: 21900895 [TBL] [Abstract][Full Text] [Related]
35. Evolution of iron and oxygen biogeochemical cycles during the Precambrian. Watanabe Y; Tajika E; Ozaki K Geobiology; 2023 Nov; 21(6):689-707. PubMed ID: 37622474 [TBL] [Abstract][Full Text] [Related]
36. Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community. Vannini C; Munz G; Mori G; Lubello C; Verni F; Petroni G Syst Appl Microbiol; 2008 Dec; 31(6-8):461-73. PubMed ID: 18814984 [TBL] [Abstract][Full Text] [Related]
37. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326 [TBL] [Abstract][Full Text] [Related]
38. Nitrospira-dominated biofilm within a thermal artesian spring: a case for nitrification-driven primary production in a geothermal setting. Marks CR; Stevenson BS; Rudd S; Lawson PA Geobiology; 2012 Sep; 10(5):457-66. PubMed ID: 22726612 [TBL] [Abstract][Full Text] [Related]
39. Novel bacterial community associated with 500-year-old unpreserved archaeological wood from King Henry VIII's Tudor Warship the Mary Rose. Preston J; Watts JE; Jones M Appl Environ Microbiol; 2012 Dec; 78(24):8822-8. PubMed ID: 23023757 [TBL] [Abstract][Full Text] [Related]
40. Isotopic reconstruction of iron oxidation-reduction process based on an Archean Ocean analogue. Yang X; Guo Q; Boyko V; Avetisyan K; Findlay AJ; Huang F; Wang Z; Chen Z Sci Total Environ; 2022 Apr; 817():152609. PubMed ID: 34963590 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]