BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29885646)

  • 1. Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study.
    Singh H; Du J; Singh P; Mavlonov GT; Yi TH
    J Photochem Photobiol B; 2018 Aug; 185():100-110. PubMed ID: 29885646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS.
    Yoon SJ; Park JY; Choi S; Lee JB; Jung H; Kim TD; Yoon SR; Choi I; Shim S; Park YJ
    Biochem Biophys Res Commun; 2015 Aug; 463(4):1184-9. PubMed ID: 26086107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages.
    Chen S; Chen S; Zeng Y; Lin L; Wu C; Ke Y; Liu G
    J Appl Toxicol; 2018 Jul; 38(7):978-986. PubMed ID: 29492987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular synthesis of gold nanoparticles by
    Liu Y; Perumalsamy H; Kang CH; Kim SH; Hwang JS; Koh SC; Yi TH; Kim YJ
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):777-788. PubMed ID: 32308043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation.
    Silva AH; Lima E; Mansilla MV; Zysler RD; Troiani H; Pisciotti MLM; Locatelli C; Benech JC; Oddone N; Zoldan VC; Winter E; Pasa AA; Creczynski-Pasa TB
    Nanomedicine; 2016 May; 12(4):909-919. PubMed ID: 26767515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidative, anti-inflammatory, and matrix metalloproteinase inhibitory activities of 20(S)-ginsenoside Rg3 in cultured mammalian cell lines.
    Shin YM; Jung HJ; Choi WY; Lim CJ
    Mol Biol Rep; 2013 Jan; 40(1):269-79. PubMed ID: 23054007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.
    Poller JM; Zaloga J; Schreiber E; Unterweger H; Janko C; Radon P; Eberbeck D; Trahms L; Alexiou C; Friedrich RP
    Int J Nanomedicine; 2017; 12():3207-3220. PubMed ID: 28458541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide inhibition of lipopolysaccharide-stimulated RAW 247.6 cells by ibuprofen-conjugated iron oxide nanoparticles.
    Romano M; Uchiyama MK; Cardoso RM; Toma SH; Baptista MS; Araki K
    Nanomedicine (Lond); 2020 Oct; 15(25):2475-2492. PubMed ID: 32945229
    [No Abstract]   [Full Text] [Related]  

  • 9. Ginsenoside Rg3 inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase.
    Kim ND; Kim EM; Kang KW; Cho MK; Choi SY; Kim SG
    Br J Pharmacol; 2003 Oct; 140(4):661-70. PubMed ID: 14534150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effects of sulfated 20(S)-ginsenoside Rh2 on the release of pro-inflammatory mediators in LPS-induced RAW 264.7 cells.
    Yi PF; Bi WY; Shen HQ; Wei Q; Zhang LY; Dong HB; Bai HL; Zhang C; Song Z; Qin QQ; Lv S; Wu SC; Fu BD; Wei XB
    Eur J Pharmacol; 2013 Jul; 712(1-3):60-6. PubMed ID: 23665488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion.
    Rojas JM; Sanz-Ortega L; Mulens-Arias V; Gutiérrez L; Pérez-Yagüe S; Barber DF
    Nanomedicine; 2016 May; 12(4):1127-1138. PubMed ID: 26733263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodistribution and Clearance of Stable Superparamagnetic Maghemite Iron Oxide Nanoparticles in Mice Following Intraperitoneal Administration.
    Pham BTT; Colvin EK; Pham NTH; Kim BJ; Fuller ES; Moon EA; Barbey R; Yuen S; Rickman BH; Bryce NS; Bickley S; Tanudji M; Jones SK; Howell VM; Hawkett BS
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29320407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties.
    Solar P; González G; Vilos C; Herrera N; Juica N; Moreno M; Simon F; Velásquez L
    J Nanobiotechnology; 2015 Feb; 13():14. PubMed ID: 25886018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts.
    Wierzbinski KR; Szymanski T; Rozwadowska N; Rybka JD; Zimna A; Zalewski T; Nowicka-Bauer K; Malcher A; Nowaczyk M; Krupinski M; Fiedorowicz M; Bogorodzki P; Grieb P; Giersig M; Kurpisz MK
    Sci Rep; 2018 Feb; 8(1):3682. PubMed ID: 29487326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into the central nervous system.
    Tong HI; Kang W; Shi Y; Zhou G; Lu Y
    Int J Pharm; 2016 May; 505(1-2):271-82. PubMed ID: 27001531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with dihexadecyl phosphate (DHP).
    Mieloch AA; Żurawek M; Giersig M; Rozwadowska N; Rybka JD
    Sci Rep; 2020 Feb; 10(1):2725. PubMed ID: 32066785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle.
    Shevtsov MA; Nikolaev BP; Ryzhov VA; Yakovleva LY; Dobrodumov AV; Marchenko YY; Margulis BA; Pitkin E; Mikhrina AL; Guzhova IV; Multhoff G
    Nanomedicine; 2016 Apr; 12(3):611-621. PubMed ID: 26656626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase.
    Hien TT; Kim ND; Pokharel YR; Oh SJ; Lee MY; Kang KW
    Toxicol Appl Pharmacol; 2010 Aug; 246(3):171-83. PubMed ID: 20546771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-kappaB pathways.
    Jung WK; Choi I; Lee DY; Yea SS; Choi YH; Kim MM; Park SG; Seo SK; Lee SW; Lee CM; Park YM; Choi IW
    Int J Biochem Cell Biol; 2008; 40(11):2572-82. PubMed ID: 18571461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary Study of MR and Fluorescence Dual-mode Imaging: Combined Macrophage-Targeted and Superparamagnetic Polymeric Micelles.
    Li WJ; Wang Y; Liu Y; Wu T; Cai WL; Shuai XT; Hong GB
    Int J Med Sci; 2018; 15(2):129-141. PubMed ID: 29333097
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.