BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 2988578)

  • 1. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells.
    Thompson TE; Tillack TW
    Annu Rev Biophys Biophys Chem; 1985; 14():361-86. PubMed ID: 2988578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of protein-glycolipid recognition at the membrane bilayer.
    Evans SV; Roger MacKenzie C
    J Mol Recognit; 1999; 12(3):155-68. PubMed ID: 10398406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and functional properties of diacylglycerols in membranes.
    Goñi FM; Alonso A
    Prog Lipid Res; 1999 Jan; 38(1):1-48. PubMed ID: 10396601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligosaccharide behavior of complex natural glycosphingolipids in multicomponent model membranes.
    Singh DM; Shan X; Davis JH; Jones DH; Grant CW
    Biochemistry; 1995 Jan; 34(2):451-63. PubMed ID: 7819237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ
    Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Globoside with spin-labelled fatty acid: bilayer lateral distribution and immune recognition.
    Mehlhorn IE; Barber KR; Grant CW
    Biochim Biophys Acta; 1988 Sep; 943(3):389-404. PubMed ID: 2843230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosphingolipid backbone conformation and behavior in cholesterol-containing phospholipid bilayers.
    Hamilton KS; Jarrell HC; Brière KM; Grant CW
    Biochemistry; 1993 Apr; 32(15):4022-8. PubMed ID: 8471610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosphingolipid headgroup orientation in fluid phospholipid/cholesterol membranes: similarity for a range of glycolipid fatty acids.
    Morrow MR; Singh DM; Grant CW
    Biophys J; 1995 Sep; 69(3):955-64. PubMed ID: 8519995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An X-ray diffraction study of model membrane raft structures.
    Quinn PJ; Wolf C
    FEBS J; 2010 Nov; 277(22):4685-98. PubMed ID: 20977668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the molecular features of glycosphingolipids affect domain formation in fluid membranes.
    Westerlund B; Slotte JP
    Biochim Biophys Acta; 2009 Jan; 1788(1):194-201. PubMed ID: 19073136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosphingolipid interdigitation in phospholipid bilayers examined by deuterium NMR and EPR.
    Florio E; Jarrell H; Fenske DB; Barber KR; Grant CW
    Biochim Biophys Acta; 1990 Jun; 1025(2):157-63. PubMed ID: 2163675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid domains in biological membranes: their structural and functional perturbation by free fatty acids and the regulation of receptor mobility. Co-presidential address.
    Karnovsky MJ
    Am J Pathol; 1979 Nov; 97(2):212-21. PubMed ID: 525671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in glycosphingolipids of plasma membranes from Morris hepatoma 5123TC.
    Dnistrian AM; Skipski VP; Barclay M; Stock CC
    Cancer Res; 1977 Jul; 37(7 Pt 1):2182-7. PubMed ID: 193636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of glycosphingolipids in phosphatidylcholine bilayers: use of antibody molecules and Fab fragments as morphologic markers.
    Rock P; Allietta M; Young WW; Thompson TE; Tillack TW
    Biochemistry; 1990 Sep; 29(36):8484-90. PubMed ID: 2252906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular level investigation of organization in ternary lipid bilayer: a computational approach.
    Mondal S; Mukhopadhyay C
    Langmuir; 2008 Sep; 24(18):10298-305. PubMed ID: 18712895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric and thermodynamic restrictions for the self-assembly of glycosphingolipid-phospholipid systems.
    Maggio B
    Biochim Biophys Acta; 1985 May; 815(2):245-58. PubMed ID: 3995027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fluid mosaic model of the structure of cell membranes.
    Singer SJ; Nicolson GL
    Science; 1972 Feb; 175(4023):720-31. PubMed ID: 4333397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.