BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29885855)

  • 21. The critical chemical and mechanical regulation of folic acid on neural engineering.
    Kim GB; Chen Y; Kang W; Guo J; Payne R; Li H; Wei Q; Baker J; Dong C; Zhang S; Wong PK; Rizk EB; Yan J; Yang J
    Biomaterials; 2018 Sep; 178():504-516. PubMed ID: 29657092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scalable Purification of Plasmid DNA Nanoparticles by Tangential Flow Filtration for Systemic Delivery.
    Liu HW; Hu Y; Ren Y; Nam H; Santos JL; Ng S; Gong L; Brummet M; Carrington CA; Ullman CG; Pomper MG; Minn I; Mao HQ
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30326-30336. PubMed ID: 34162211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration.
    Wan T; Wang YL; Zhang FS; Zhang XM; Zhang YC; Jiang HR; Zhang M; Zhang PX
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in Biomimetic Nerve Guidance Conduits for Peripheral Nerve Regeneration.
    Mankavi F; Ibrahim R; Wang H
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Magnesium Degradation on Schwannoma Cell Responses to Nerve Injury Using an In Vitro Injury Model.
    Bhat K; Hanke L; Helmholz H; Quandt E; Pixley S; Willumeit-Römer R
    J Funct Biomater; 2024 Mar; 15(4):. PubMed ID: 38667545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The GDNF-gel/HA-Mg conduit promotes the repair of peripheral nerve defects by regulating PPAR-γ/RhoA/ROCK signaling pathway.
    Cai Y; Chen Y; Zhang G; Lin Y; Zhang J; Liang J; Lv L; Wang Y; Fang X; Dang X
    iScience; 2024 Feb; 27(2):108969. PubMed ID: 38322994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning plasmid DNA amounts for cost-effective transfections of mammalian cells: when less is more.
    Carreño A; Guerrero-Yagüe R; Casal E; Mendoza R; Corchero JL
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):98. PubMed ID: 38212965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nerve guidance conduit design based on self-rolling tubes.
    Aigner TB; Haynl C; Salehi S; O'Connor A; Scheibel T
    Mater Today Bio; 2020 Jan; 5():100042. PubMed ID: 32159159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-needle blow-spinning technique for fabricating collagen nanofibrous nerve guidance conduit with scalable productivity and high performance.
    Yang CY; Hou Z; Hu P; Li C; Li Z; Cheng Z; Yang S; Ma P; Meng Z; Wu H; Pan Y; Cao Z; Wang X
    Mater Today Bio; 2024 Feb; 24():100942. PubMed ID: 38283983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of undifferentiated adipose-derived stem cells in peripheral nerve repair.
    Zhang R; Rosen JM
    Neural Regen Res; 2018 May; 13(5):757-763. PubMed ID: 29862994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Vitro Models for the Development of Peripheral Nerve Conduits, Part I: Design of a Fibrin Gel-Based Non-Contact Test.
    De Stefano P; Federici AS; Draghi L
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuro-regenerative behavior of adipose-derived stem cells in aligned collagen I hydrogels.
    Lewis M; David G; Jacobs D; Kuczwara P; Woessner AE; Kim JW; Quinn KP; Song Y
    Mater Today Bio; 2023 Oct; 22():100762. PubMed ID: 37600354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells.
    Jenkins PM; Laughter MR; Lee DJ; Lee YM; Freed CR; Park D
    Nanoscale Res Lett; 2015 Dec; 10(1):972. PubMed ID: 26071111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine intelligence for nerve conduit design and production.
    Stewart CE; Kan CFK; Stewart BR; Sanicola HW; Jung JP; Sulaiman OAR; Wang D
    J Biol Eng; 2020; 14():25. PubMed ID: 32944070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Treatment of Obesity Through Glial Cell-Derived Neurotrophic Factor Lipid Nanoparticle Delivery in Mice.
    Yang C; Mwangi SM; Balasubramaniam A; Li G; Merlin-Zhang O; Liu Y; Srinivasan S
    Gastro Hep Adv; 2024; 3(1):38-47. PubMed ID: 38390283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid continuous 3D printing of customizable peripheral nerve guidance conduits.
    Zhu W; Tringale KR; Woller SA; You S; Johnson S; Shen H; Schimelman J; Whitney M; Steinauer J; Xu W; Yaksh TL; Nguyen QT; Chen S
    Mater Today (Kidlington); 2018 Nov; 21(9):951-959. PubMed ID: 31156331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in nerve guidance conduits for peripheral nerve repair and regeneration.
    Zheng S; Wei H; Cheng H; Qi Y; Gu Y; Ma X; Sun J; Ye F; Guo F; Cheng C
    Am J Stem Cells; 2023; 12(5):112-123. PubMed ID: 38213640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection.
    Abdalkader R; Kawakami S; Unga J; Higuchi Y; Suzuki R; Maruyama K; Yamashita F; Hashida M
    Drug Deliv; 2017 Nov; 24(1):320-327. PubMed ID: 28165819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liter-scale manufacturing of shelf-stable plasmid DNA/PEI transfection particles for viral vector production.
    Hu Y; Eder BA; Lin J; Li S; Zhu Y; Wang TH; Guo T; Mao HQ
    Mol Ther Methods Clin Dev; 2024 Mar; 32(1):101194. PubMed ID: 38352269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photobiomodulation and Vascularization in Conduit-Based Peripheral Nerve Repair: A Narrative Review.
    Fellin CR; Steiner RC; Buchen JT; Anders JJ; Jariwala SH
    Photobiomodul Photomed Laser Surg; 2024 Jan; 42(1):1-10. PubMed ID: 38109199
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.