These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 29886004)

  • 1. Corrigendum to "Hopfield networks as a model of prototype-based category learning: A method to distinguish trained, spurious, and prototypical attractors" [Neural Netw. 91 (2017) 76-84].
    Gorman C; Robins A; Knott A
    Neural Netw; 2019 Apr; 112():98. PubMed ID: 29886004
    [No Abstract]   [Full Text] [Related]  

  • 2. Hopfield networks as a model of prototype-based category learning: A method to distinguish trained, spurious, and prototypical attractors.
    Gorman C; Robins A; Knott A
    Neural Netw; 2017 Jul; 91():76-84. PubMed ID: 28494329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistable gradient networks. I. Attractors and pattern retrieval at low loading in the thermodynamic limit.
    McGraw PN; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016118. PubMed ID: 12636575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust method for distinguishing between learned and spurious attractors.
    Robins AV; McCallum SJ
    Neural Netw; 2004 Apr; 17(3):313-26. PubMed ID: 15037350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing memory capacity and reducing spurious states in neural networks by introducing coherent and collective firing.
    Koh YW; Takatsuka K
    Neural Comput; 2009 May; 21(5):1321-34. PubMed ID: 19718816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
    Pu YF; Yi Z; Zhou JL
    IEEE Trans Neural Netw Learn Syst; 2017 Oct; 28(10):2319-2333. PubMed ID: 27429451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex dynamics in simple Hopfield neural networks.
    Yang XS; Huang Y
    Chaos; 2006 Sep; 16(3):033114. PubMed ID: 17014219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NDRAM: nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns.
    Chartier S; Proulx R
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1393-400. PubMed ID: 16342483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing asymmetric Hopfield-type associative memory with higher order hamming stability.
    Lee DL; Chuang TC
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1464-76. PubMed ID: 16342488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.
    Woodward A; Froese T; Ikegami T
    Neural Netw; 2015 Feb; 62():39-46. PubMed ID: 25257715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new mechanical approach to handle generalized Hopfield neural networks.
    Barra A; Beccaria M; Fachechi A
    Neural Netw; 2018 Oct; 106():205-222. PubMed ID: 30081347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing cancer subtypes as attractors of Hopfield networks.
    Maetschke SR; Ragan MA
    Bioinformatics; 2014 May; 30(9):1273-9. PubMed ID: 24407221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrigendum to "A model of operant learning based on chaotically varying synaptic strength" [Neural Netw. 108 (2018) 114-127].
    Wei T; Webb B
    Neural Netw; 2022 Mar; 147():198. PubMed ID: 30857768
    [No Abstract]   [Full Text] [Related]  

  • 15. "Dynamical confinement" in neural networks and cell cycle.
    Demongeot J; Benaouda D; Jezequel C
    Chaos; 1995 Mar; 5(1):167-173. PubMed ID: 12780170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing spurious and nominal attractors applying unlearning to an asymmetric neural network.
    Horas JA; Bea EA
    Int J Neural Syst; 2002 Apr; 12(2):109-16. PubMed ID: 12035125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memory dynamics in attractor networks with saliency weights.
    Tang H; Li H; Yan R
    Neural Comput; 2010 Jul; 22(7):1899-926. PubMed ID: 20235821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local Dynamics in Trained Recurrent Neural Networks.
    Rivkind A; Barak O
    Phys Rev Lett; 2017 Jun; 118(25):258101. PubMed ID: 28696758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient continuous-time asymmetric Hopfield networks for memory retrieval.
    Zheng P; Tang W; Zhang J
    Neural Comput; 2010 Jun; 22(6):1597-614. PubMed ID: 20141477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability analysis of fractional-order Hopfield neural networks with time delays.
    Wang H; Yu Y; Wen G
    Neural Netw; 2014 Jul; 55():98-109. PubMed ID: 24819875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.